Ease of use and high reliability make UNIMEC trapezoidal screw jacks suitable for a wide variety of uses. They can be employed to lift, pull, move, or align any kind of loads, with a perfect synchronism which can hardly be obtained with other handling methods. UNIMEC trapezoidal screw jacks are absolutely irreversible, that is, they can their applied loads without needing any brakes or other locking systems. The screw jacks can be employed singularly or in groups properly connected with shafts, ts, and/or bevel gearboxes. They can be driven by different motors: electrical, with either alternating or direct current, as well as hydraulic or pneumatic motors. Also they can be driven manually or with any other type of transmission. In addition to the models shown on the following pages, UNIMEC can produce custom designed screw jacks to meet all the requirements. UNIMEC trapezoidal screw jacks are designed and manufactured using innovative technology so to supply a product which identifies itself with the state of the art in the transmission devices.
trapezoidal screw jacks The highest quality and a 28 years long experience are able to meet the most demanding and sophisticated requirements. The outer surfaces are completely machine finished and the parts are assembled with special care, in order to allow the application of s, flanges, pins, or any other components a project may require.The application of double guides throughout the product line provides a very good running efficiency even under the most strenuous operating conditions. Special sealing systems enable the inner gears to operate in a bath of lubricant, which guarantees them a long lasting life.
18
19
60 TP Threaded spindle model with translating threaded spindle. The rotation of the worm screw is transformed in the axial movement of the threaded spindle by means of the worm wheel. The threaded spindle must have a rotational constraint.
62 TPR Threaded spindle model with rotating threaded spindle. The rotation of the worm screw actuates the movement of the worm wheel which causes the threaded spindle to move, being fixedly connected to it. The external nut (lead nut), transforms the rotational movement of the threaded spindle into a linear movement. The nut must have a rotational constraint.
67 MTP TP model screw jacks arranged for direct coupling to single phase, three-phase, selfbraking, direct current, hydraulic, pneumatic motors etc.
67 MTPR TPR model screw jacks arranged for direct coupling to single phase, three-phase, selfbraking, direct current, hydraulic, pneumatic motors etc.
20
Application samples are online at www.unimec.eu - section Applications
CTP TP model screw jacks arranged for direct coupling to single phase, three-phase, selfbraking, direct current, hydraulic, pneumatic motors, etc. by means of a bell house and a t.
CTPR TPR model screw jacks arranged for direct coupling to single phase, three-phase, selfbraking, direct current, hydraulic, pneumatic motors, etc. by means of a bell house and a t.
RTP TP model screw jacks arranged for direct coupling to reducers or worm screw or coaxial motor reducers, etc.
RTPR TPR model screw jacks arranged for direct coupling to reducers or worm screw or coaxial motor reducers, etc.
VARIOUS END FITTINGS 64
BU 70 TP model screw jack with anti-withdrawing bush
PRO 68 TP model screw jacks with oil bath rigid protection.
CU 69 TP model screw jack oil proof assembled
PRF 71 TP model screw jacks with rigid protection and stroke control.
PE 72 TP model screw jacks with elastic protection.
PE 72 TPR model screw jacks with elastic protection.
Application samples are online at www.unimec.eu - section Applications
21
production line
PR 67 TP model screw jacks with rigid protection.
74 PRA TP model screw jacks with rigid protection and dual-guide anti-rotation.
75 AR TP model screw jacks with grooved anti-rotation spindle.
76 CS TP model screw jacks with safety lead nut for monitored wear control.
76 CS TPR model screw jacks with safety lead nut for monitored wear control.
22
Application samples are online at www.unimec.eu - section Applications
77 CSU TP model screw jacks with safety lead nut for automatic wear control.
77 CSU TPR model screw jacks with safety lead nut for automatic wear control.
78 SU TP model screw jacks with lead nut for monitored wear control.
78 SU TPR model screw jacks with lead nut for monitored wear control.
SUA 79
SUA TPR model screw jacks with lead nut for automatic wear control.
79
RG 80 TP model screw jacks with anti axial backlash lead nut.
RG 80 TPR model screw jacks with anti axial backlash lead nut.
CR 81 TP model screw jacks with worm wheel rotation control.
CR 81 TPR model screw jacks with worm wheel rotation control.
CT 81 TP-TPR model screw jacks with casing temperature control.
CTC 81 TPR model screw jack with lead nut temperature control.
Application samples are online at www.unimec.eu - section Applications
23
production line
TP model screw jacks with lead nut for automatic wear control.
82 SP TP model screw jacks with additional mounting plates.
82 SP TPR model screw jacks with additional mounting plates.
83 FP TP model screw jacks with -through holes for bolts.
83 FP TPR model screw jacks with -through holes for bolts.
24
Application samples are online at www.unimec.eu - section Applications
84 PO TP model screw jacks with rigid rocking protection.
85 P TP model screw jacks with lateral pins.
85 P TPR model screw jacks with lateral pins.
86 DA Double action TPR model screw jacks.
FD 87 TPR model screw jacks for fast disassembling of the trapezoidal spindle.
AM 88 TP model screw jacks with over-size spindle.
TP model screw jacks with special end fittings.
TP model screw jacks with telescopic spindle.
AM 88 TPR model screw jacks with over-size spindle.
METAL PROTECTION
Application samples are online at www.unimec.eu - section Applications
25
production line
TP model screw jacks with metal protection.
Models TP model: threaded spindle with axial translation. The input rotation of the worm screw is transformed in the axial translation of the threaded spindle by means of the worm wheel. The load is applied on the threaded spindle which must have a rotational constraint.
Tr a p e z o i d a l s c r e w j a c k s TPR model: with rotational threaded spindle and external nut (lead nut). The input rotation of the worm screw causes the rotation of the threaded spindle which is attached to the worm wheel. The load is applied to an external nut (lead nut) which must have a rotational constraint.
End fittings To meet the widest possible range of needs, various types of end fittings are available, which can be custom made upon request.
Casings Casings are made of various materials depending on the size of screw jacks. For screw jacks of the 183 series, casings are made of cast aluminium AlSi12 (according to the UNI EN 1706:1999 requirements), for the series between the sizes 204 and 9010, casings are made of grey cast iron EN-GJL-250 (according to the UNI EN 1561:1998 requirements); and for the extra heavy series, from size 10012, the casing is made of electro-welded carbon steel S235J0 (according to the UNI EN 10025-2:2005 requirements).
Worm screws For the entire screw jacks line, worm screws are made of a special steel 16NiCr4 (according to the UNI EN 10084:2000).They undergo thermal treatments like case-hardening and carburizing before being thoroughly ground both on the threads and on the tangs.
Worm wheel and nut The worm wheels and nuts (lead nuts) are made of a special high-resistance aluminium bronze CuAI10Fe2-C (according to the UNI EN 1982:2000 requirements). The trapezoidal geometry of the threading meets the requirements of the ISO 2901:1993 norm. The worm wheels toothing profile has been designed especially for our screw jacks and can easily a heavy-duty use.
Threaded spindles The threaded spindles are mainly manufactured by rolling carbon steel C 45 grounded bars (according to the UNI EN 10083-2:1998 requirements). Said process, which is temperature controlled, allows to include in our standard production 6 meter long bars. The trapezoidal geometry of the threading meets the requirements of the ISO 2901:1993 norm. Threaded spindles made of stainless steel AISI 316 or other materials can be manufactured upon request for length up to 12 meters.
Protections Protections can also be applied in order to prevent dust and foreign matters from coming into with the coupling and causing damages to the threaded spindle and its nut. For TP models, a steel rigid tube can be provided on the back side, while the front side can be protected by polyester and PVC elastic bellows. In TPR models only elastic protections can be applied.
Bearings and market materials Top-quality bearings and market materials are used for the whole line.
26
C Ce Ct DX Frv fa fs ft Mtm Mtv N n P Pi Pe Pu rpm SX v ηm ηc ηs ωm ωv
= = = = = = = = = = = = = = = = = = = = = = = =
unit load to be handled [daN] equivalent unit load [daN] total load to be handled [daN] left hand spiral threading radial forces on the worm screw [daN] ambient factor service factor temperature factor torque on the drive shaft [daNm] torque on the worm screw [daNm] number of screw jacks and bevel gearboxes under a single handling number of screw jacks under a single handling mounting power requirement [kW] input power to the single screw jack [kW] equivalent power [kW] output power to the single screw jack [kW] rounds per minute left hand spiral threading axial translation speed of the load [mm/min] screw jack running efficiency configuration running efficiency structure running efficiency motor angular speed [rpm] worm screw angular speed [rpm]
Unless otherwise specified all dimensional tables show linear measurements expressed in [mm]. All the reduction ratios are expressed in the form of a fraction, unless otherwise specified.
27
components specifications and glossary
GLOSSARY
LOAD ANALYSIS AND COMPOSITION Choosing the right screw jack, and hence also its proper functioning, mostly depends on the identification of the real load acting on the screw jack. Loads can be divided in two main groups: static loads and dynamic loads; these groups are further made-up of: traction loads, compression loads, lateral loads, radial loads, eccentric loads, loads from shocks, loads from vibrations. STATIC LOADS A static load is the force that will be applied to the screw jack transmission devices while they are not in motion. DYNAMIC LOADS A dynamic load is the force that will be applied to the screw jack transmission devices while they are in motion. TRACTION LOADS A traction load is the force applied to the threaded spindle axis with an opposite direction to the casing.
COMPRESSION LOADS A compression load is a force applied to the threaded spindle axis with the same direction as the casing.
LATERAL LOADS A lateral load is a force applied perpendicular to the threaded spindle axis.
ECCENTRIC LOADS An eccentric load is a force whose centre of application does not belong to the threaded spindle axis, even having the same direction.
28
LOADS FROM SHOCKS A load from shocks is a load where the impulse forces generated by an impact are not quantifiable. LOADS FROM VIBRATIONS A load from vibrations is applied when a shock load increases the impulse frequency. Depending on the type of load some solution must be applied during the design phase: STATIC TRACTION LOAD The maximum applicable load for all models and sizes is shown in the specification tables. Shocks and/or lateral loads limit its applications. DYNAMIC TRACTION LOAD The maximum dynamic traction load which can be applied to a screw jack does not only depend on its size: it could be limited by the ambient temperature, service factors and possible lateral loads and/or shocks. It is thus necessary to check all those parameters. STATIC COMPRESSION LOAD The maximum load which can be applied is determined by the length of the threaded spindle as well as by the constraints it undergoes.The limit applicable load can be obtained on the basis of the Euler diagrams. Its application could be limited by possible shocks and/or lateral loads. DYNAMIC COMPRESSION LOAD The maximum compression load which can be applied is determined by many factors: the length of the threaded spindle, the ambient temperature, service factors and possible lateral loads and/or shocks. In addition to all the verifications already foreseen in the case of a traction load, further verifications are necessary relative to the Euler diagrams. STATIC LATERAL LOAD This kind of load induces a lateral shifting of the threaded spindle causing a damaging bending which limits the ability of the screw jack. Suitable graphs show the maximum lateral load values according to the length and size of the threaded spindle. For any further and more detailed verifications our technical office is at your disposal. DYNAMIC LATERAL LOAD A lateral load in dynamic applications is not allowed. In case of essential use of screw jacks with lateral load is for machine requirements, it will be necessary to our technical office. ECCENTRIC STATIC LOAD An eccentric load in static applications induces the same problems as the lateral loads. For this reason the above considerations are also applicable to this kind of load. DYNAMIC ECCENTRIC LOAD In case of handling an eccentric load, in order to avoid problems due to lateral load, it is necessary to create a suitably guided and sized mechanical structure, in order to absorb all the lateral components of the load. The guide must be realized very carefully: too narrow backlashes could cause seizure and stick-slips, while too rough backlashes would make useless the construction of the guide itself.
DYNAMIC LOAD FROM VIBRATIONS OR SHOCKS A dynamic load from vibrations or from shock can be damaging for the screw jack: stick-slip phenomena and consequent local overloads can enormously increase the wear conditions. It is necessary to minimize the shocks entity and the vibrations width
29
loads
STATIC LOAD FROM VIBRATIONS OR SHOCKS A load from vibrations or from shock, if not very heavy, could be the only reasons for the reversibility of the transmission moved by the screw jack. In that case it is advisable to our technical office in order to the screw jack applicability.
BACKLASH Backlash on the worm screw The worm screw – worm wheel coupling has a small degree backlash. Due to the reduction ratio and the transformation from the rotation movement to the translation movement, this backlash becomes an error of less than 0,05 mm in the linear positioning of the threaded spindle.
Lateral backlash in TP models The thread spindle and worm wheel coupling presents a natural and necessary lateral backlash indicated by A in the drawing below.The use of a double serial guide allows to minimize the entity of said backlashes, while keeping the spindle and nut axes aligned. The angular backlash on the coupling is translated on the spindle end fitting into a linear measure whose value depends on the size of the screw jack and grows according to the length of the spindle itself. Traction loads tend to reduce this backlash, while compression loads induce the opposite effect.
Lateral backlash in TPR models In TPR models the spindle and the worm wheel are locked by means of a double pins. UNIMEC carries out this operation by means of a suitable machine which keeps the axes of the two components coincident during the two drillings and the consequent pins insertions. Hence, the threaded spindle rotates minimizing the oscillations due to concentricity errors. For a proper operation it is necessary for the to provide solutions able to keep the spindle and the lead nut aligned.The guides can be external or directly implicate the structure of the lead nut, as can be seen in the following drawings. Drawing A: the lead nut is connected to the load by means of particular screws which allow it to fit into the threaded spindle position. The guides must be realized externally. Drawing B: The lead nut, which has been properly milled, is connected to the load by means of brackets which ensure anti-rotation. The brackets must be realized externally. Drawing C:The lead nut, which has been properly milled, is connected to the load by means of brackets which ensure anti-rotation. The upper additional ring acts as a guide. Drawing D: The double ring guarantees a higher reliability with respect to the C system.
A
B
C
D
Axial backlash In B the axial backlash between the threaded spindle and its nut (either a worm wheel or a lead nut) is caused by the natural and necessary tolerance characterizing this kind of couplings. For construction purposes it is only important in the case where the load changes its direction of application. For applications where there can be reciprocating traction and compression loads, and therefore a need to compensate the axial backlash, it is possible to apply a backlash reduction system. The axial backlash reduction must not be forced in any case, in order to avoid that the screw and the nut get blocked.
30
HANDLINGS Manual operation All screw jacks in the series can be manually operated. The following table expresses in [daN] the maximum load that can be handled according to the reduction ratio of screw jacks, considering the application of a force of 5 daN on a handwheel having a radius of 250 mm. Obviously, greater loads can be manually handled by applying further reductions to the screw jack or by increasing the radius of the handwheel. Size fast ratio [daN] normal ratio [daN] slow ratio [daN]
183 500 500 -
204 1000 1000 1000
306 2000 2500 2500
407 1500 2900 5000
559 1000 2000 4300
7010 900 1600 3200
8010 860 1500 3200
Motorized operation Motors can be used for all jacks in the series. As a standard production, for the IEC unified motors, it is possible to connect them directly to screw jacks having a size between 204 and 8010. Special flanges can be made for hydraulic, pneumatic, brushless motors, as well as for direct current motors, permanent magnet motors, stepper motors and other special motors. In the case where it is not possible to motorize a screw jack directly, a connection by means of a bell house and a t can be foreseen. In special cases it is also possible to motorize size 183 and the s over 8010.The power tables determine, in case of unit service factors and for every single screw jack, the moving power and the input torque according to the size, the ratio, the dynamic load and the linear speed.
Rotation directions The rotation directions and the respective linear movements are showed in the drawings below. In standard conditions UNIMEC supplies screw jacks equipped with right handed worm screw, to which the movements illustrated in drawings 1 and 2 correspond. Upon request it is possible to have a left-handed worm screw, which the movements illustrated in drawings 3 and 4 correspond to. The combinations between threaded spindles and left-handed or right-handed worm screw, lead to the four combinations listed in the table below. We remind, that UNIMEC’s standard production does not include motorized left-handed worm screw.
1
DX DX Possible 1-2
2
DX SX Possible 3-4
3
SX DX Impossible 3-4
SX SX Impossible 1-2
4
Emergency operation In case of black-out, in order to be able to operate the single screw jacks or the complete structures by means of a crank, a free end on the screw jack worm screw or on the transmission is to be foreseen. In case of selfbraking motors or worm screw motor reducers, the brake must firstly be released and then it is necessary to disassemble those components from the transmission as the reducer could also be irreversible. It is advisable to equip the emergency operation mechanism with a safety device to cut the electric circuit.
31
backlashes and handling
Worm screw Threaded spindle Direct motorization on the worm screw Handling
LUBRICATION Inner lubrication The lubrication of the inner transmission devices to the casing is made, in the serial production, using a long lasting grease: TOTAL CERAN CA. It is an extreme pressure lubricant based on calcium sulfonate. For size 183, on the contrary, the TOTAL MULTIS MS 2 is used, which is a calcium-soap grease, suited for extreme pressures as well. In any case a plug is foreseen for all sizes (except for 183) in case of lubricant filling up. The technical specifications and the application field for the lubricant inside the casing are listed below. Lubricant
Application field
Operating temperature [°C]*
Technical specifications
standard
-15 : +130
standard (183)
-15 : +100
DIN 51502: OGPON -25 ISO 6743-9: L-XBDIB 0 DIN 51502: MPF2K -25 ISO 6743-9: L-XBCEB 2
Food industry
-10 : +150
Total Ceran CA Total Multis MS2 Total Nevastane HT/AW-1
NSF-USDA: H1
* for operating temperatures included between 80°C and 150°C Viton® seals should be used; for temperatures higher than 150°C, and lower than -20°C, it is advisable to our Technical office.
The quantity of lubricant contained in the screw jacks is listed in the following table. Size Inner lubricant quantity [kg]
183 0,06
204 0,1
306 0,3
407 0,6
559 1
7010 1,4
8010 1,4
9010 10012 12014 14014 16016 20018 25022 2,3 4 4 14 14 28 28
The threaded spindle The end is responsible for the lubrication of the threaded spindle which must be carried out using an adhesive lubricant, addicted for extreme pressures: Lubricant Rothen 2000/P Special
Application field
Operation temperature [°C]
Technical specifications
standard
0 : +200
Not foreseen
standard
0 : +150
AGMA 9005: D94 DIN 51517-3: CLP-US STEEL 224
Food industry
0 : +130
NSF-USDA: H1
(additive which can also be used pure)
Total Carter EP 2200 (not compatible with polyglicol oils)
Total Nevastane EP 1000
Lubricating the threaded spindle is an important and determining factor in the proper functioning of the screw jack. It must be carried out at regular intervals that can assure a constant coat of clean lubricant between the parts. Insufficient lubrication, the use of an oil without extreme pressure additives or an improper lubrication can lead to abnormal overheating and consequent wear phenomena, which naturally reduce the operating life of the screw jacks. In case the screw jacks are not visible or the threaded spindles are covered by protections, it is necessary to periodically the lubrication conditions. For heavier duties than those showed in the relative tables it is recommended to our Technical office.
32
Semi-automatic lubrication Many different systems of automatic lubrication are feasible, only the most common ones are listed as follows: 1 - For vertically mounted TP model screw jacks, it is possible to provide an oil bath rigid protection (with recirculation option) or, in case of high performances, a single chamber operation.This kind of lubrication will be described in details on page 68-69. 2 - Application of a additional ring on the cover in order to create a lubricant recovery tank. 3 - Use of a lubricant drop-applicator to be applied to a hole made in the cover for TP models, and in the lead nut for TPR models.
1
2
3
Centralized lubrication
33
lubrication
Many automatic lubrication systems with a central pump and various distribution points are also possible. The amount of lubricant required depends on the duty and work environment. A centralized dosing system does not exclude a periodic check of the lubrication conditions in the threaded spindle.
INSTALLATION AND MAINTENANCE Installation The screw jack must be installed in a manner that does not create lateral loads on the threaded spindle. Great care must be taken to ensure that the threaded spindle is orthogonal to the mounting plane, and that the load and threaded spindle are on the same axis. Employing multiple screw jacks to handle the same load (see the mounting schemes section on pages 90-91) requires further verifications: it is critical that the load points, (the end fittings for TP models and the lead nuts for TPR models), are perfectly aligned in order that the load can be uniformly distributed; otherwise the misaligned screw jacks would act as brake or counter-load. Whenever several jacks have to be connected by means of transmission shafts, it is recommended that they be perfectly aligned in order to avoid overloading of the worm screws. It is advisable to use ts capable of absorbing alignment errors but having, at the same time, a rigid torsion necessary to keep the synchronization of the transmission. The assembly or disassembly of the ts or pulleys of worm screw must be carried out by means of tie rods or extractors, using, if necessary, the threaded hole on top of the worm screw; striking or hammering could damage the inner bearings. For heat-shrinking ts or pulleys, we recommend a temperature between 80-100 °C. Installations environments with dust, water, vapors, etc. require precautions to protect the threaded spindle.This can be done by using elastic or rigid protections. The above protections are also used in order to avoid any accidental human with the moving devices. For civil applications it is always advisable to use the safety components.
Preparing for service All UNIMEC’s screw jacks are supplied filled with long lasting lubricant which ensures a perfect lubrication of the worm gear/worm wheel group and all the inner parts. All screw jacks (except for the size 183) are equipped with a lubricant plug for filling-up the lubricant as necessary. As clearly explained on relative paragraph, lubrication of the threaded spindle is a ’s responsibility and must be carried out periodically depending on the duty conditions and the operating environment. Special systems are available for holding the screw jacks in any position without creating leakage problems. The application of some accessories can limit these assembly possibilities: the various solutions to be adopted will be explained in the relevant paragraphs.
Start-up All screw jacks undergo a careful quality examination before being delivered to the client, and are dynamically tested load-free. When starting-up a machine where screw jacks are installed, it is critical to check for the lubrication of the threaded spindles and for the absence of foreign material. During the calibration phase of the electrical end-of-stroke systems, the inertia of the moving masses should be taken into , which for vertical loads will be lower in ascent and greater in descent. It is advisable to startup the machine with the minimum possible load and to make sure all components are working properly, before assuming regular operation. Especially at start-up, it is critical to follow the instructions given in the manual: continuous or hazardous testing maneuvers could lead to an abnormal overheating of the screw jacks and cause irreparable damages. One single temperature peak is enough to cause premature wear or breakdown of the screw jack.
34
Routine maintenance Screw jacks must be periodically inspected, depending on the level of use and working environment. It is advisable to check for lubricant leakages from the casing, and, if this occurs, it is necessary to find and eliminate the cause and fill the lubricant up the correct level. The lubrication conditions of the threaded spindle must be periodically inspected (and restored if necessary) as well as the presence of any foreign material. The safety components must be inspected according to the applicable norms.
Storage Screw jacks must be protected from deposits of dust and foreign matter during storage. Particular attention must be paid to saline or corrosive atmospheres. We also recommend to: 1 - Periodically rotate the input shaft to ensure proper lubrication of the inner parts and avoid that the seals dry up, therefore causing lubricant leakages. 2 - Lubricate and protect the threaded spindle, the worm screw and the non varnished components. 3 - the threaded spindle in case of horizontal storage.
Warranty Warranty is valid given when the instructions contained in our manual are carefully followed.
ORDERING CODES 306
1/5
1000
size
reduction ratio
stroke [mm]
TF
PR-PE
B
IEC 80B5
SU-PO
motor flange
accessories
end fitting protections construction model
35
installation and maintenance
TP model (TP/TPR) (MTP/MTPR)
TP MODEL 1 2 3 4 5 5.1 6 8 8.1 9 10 11 12 13 13.1 14 14.1 15 16 17 18 19 20 21 22 23
21
Casing Cover Guide bushing Worm wheel Worm screw Motor worm screw right-handed Threaded spindle Worm screw bearing Motor worm screw bearing Worm wheel bearings Seal Seal Seal Snap ring Snap ring for motoring Seal Seal for motoring Rigid protection Key 14 Dowel 13 End fitting elastic fastening pin Plug Elastic protection End fitting Motor flange 17 Screws
18 6 20
2 12
10 9
4
9
8
19
22
16 17
1
16
23
10 5.1
11 16 3
8.1
5
13.1 14.1 8 13 15
36
14
TPR MODEL 6
Casing Cover Guide bushing Worm wheel Worm screw Motor worm screw right handed Threaded spindle Lead nut Worm screw bearing Motor worm screw bearing Worm wheel bearing Seal Seal Seal Snap ring Snap ring for motoring Seal Seal for motoring Key Dowel Worm wheel elastic fastening pin Plug Elastic protection Motor flange Screws Seal
7
20
2 12 10 9
4 18.1
18.1 9 19
22
14 13 8
17
1 2 3 4 5 5.1 6 7 8 8.1 9 10 11 12 13 13.1 14 14.1 16 17 18.1 19 20 22 23 24
16 17
10
23
16
8.1 13.1
11
14.1
16 8
3
13 24
5
14
37
exploded views and spare parts
5.1
1
DIMENSIONING OF THE SCREW JACK For a correct dimensioning of the screw jack it is necessary to observe the following steps: Definition of the application data (A)
Calculation of the unit load (B)
Verification at the equivalent load (C)
negative
Change the size or mounting scheme
positive
Verification at the equivalent power (D)
negative
positive
Verification at the buckling load (E)
negative
positive
Verification at the lateral load (F)
negative
positive
Verification at the torque (G)
negative
positive
Verification at the radial loads (H)
negative
positive
End
DESCRIPTIVE TABLE
38
Taille Size Portée issible issibile load [daN] [daN] Tige Trapezoidal trapézoïdale: spindle: diamètre diameter x pas per[mm] pitch [mm] Rapport Theoretical de réduction reduction théorique ratio rapide Fast Normal normal Slow lent Rapport Real reduction de réduction ratio réelle rapide Fast Normal normal Slow lent Spindle Course tige stroke pour foruna tour turn de of the la roue worm hélicoïdale wheel [mm] [mm] Course tige Spindle stroke pour foruna tour turn de of the la vis worm sansscrew fin [mm] [mm] rapide Fast Normal normal Slow lent Rendement Running efficiency [%] [%] rapide Fast Normal normal Slow lent Operation Température temperature d'exercice[°C] [°C] Weight Poids visoftrapézoïdale the trapezoidal pourscrew 100 for mm100 [kg]mm [kg] Weight Poids vérin of the (sans screw vis)jack [kg](screw not included) [kg]
183 204 306 407 559 7010 8010 500 1000 2500 5000 10000 20000 25000 18x3 20x4 30x6 40x7 55x9 70x10 80x10 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/20 1/10 1/10 1/10 1/10 1/10 1/10 1/30 1/30 1/30 1/30 1/30 1/30 4/20 4/19 4/19 6/30 6/30 5/26 5/26 1/20 2/21 3/29 3/30 3/30 3/29 3/29 1/30 1/30 1/30 1/30 1/30 1/30 3 4 6 7 9 10 10 0,6 0,8 1,2 1,4 1,8 2,0 2,0 0,15 0,4 0,6 0,7 0,9 1,0 1,0 0,13 0,2 0,23 0,3 0,33 0,33 29 31 30 28 25 23 22 24 28 26 25 22 21 20 20 18 18 17 14 14 -10 / 80 (for different conditions please our technical office) 0,16 0,22 0,5 0,9 1,8 2,8 3,7 1,8 5,9 10 18 34 56 62
A - THE APPLICATION DATA For a right dimensioning of the screw jacks it is necessary to identify the application data: LOAD [daN] = the load is identified with the force applied to the translating device of a screw jack. Normally the dimensioning is calculated considering the maximum applicable load (worst case). It is important to consider the load as a vector, which is defined by a modulus, a direction and a sense: the modulus quantifies the force, the direction orients spatially and gives indications on the eccentricity or on possible lateral loads, the sense identifies the traction or compression load. TRANSLATION SPEED [mm/min] = the translation speed is the load handling speed. From this speed it is possible to calculate the rotation speed of the rotating devices and the necessary power for the movement. Wear phenomena and the life of the screw jack proportionally depend on the value of the translation speed. Therefore, it is advisable to limit the translation speed in a way not to exceed the input speed of 1500 rpm on the worm screw. Input speeds up to 3000 rpm are possible but in such case we suggest ing our technical office. STROKE [mm] = it is the linear measure used to handle a load. It does not always coincide with the total length of the threaded spindle. AMBIENT VARIABLES = these values identify the environment and the operating conditions of the screw jack. Among them: temperature, oxidizing and corrosive factors, working and non-working periods, vibrations, maintenance and cleaning, lubrication quality and quantity etc. MOUNTING SCHEMES = There are several ways of handling a load by means of screw jacks. The schemes on pages 90-91 will show you some examples. Choosing a mounting scheme will condition the choice for the size and the power which is necessary for the application.
B - THE UNIT LOAD AND THE DESCRIPTIVE TABLES According to the n number of screw jacks contained in the mounting scheme it is possible to calculate each screw jack’s load by dividing the total load by n. In case the load is not fairly distributed in all screw jacks, it is recommended to consider the transmission having the heaviest load, by virtue of a dimensioning based on the worst case.
10012 40000 100x12 1/10 1/30 3/31 1/30 12 1,2 0,4 18 12
12014 60000 120x14 1/10 1/30 3/31 1/30 14 1,4 0,47 17 11
14014 80000 140x14 1/12 1/36 3/36 1/36 14 1,16 0,38 16 10
16016 100000 160x16 1/12 1/36 3/36 1/36 16 1,33 0,44 15 9
20018 150000 200x18 1/12 1/36 3/36 1/36 18 1,5 0,5 14 9
5,6 110
5,6 180
8,1 180
11 550
14 550
22 2100
25022 200000 250x22 1/12 1/36 3/36 1/36 22 1,83 0,61 14 9
Size Taille issible load [daN] Portée issibile Trapezoidal spindle: diameter per xpitch Tige trapézoïdale : diamètre pas [mm] Theoretical reduction ratio Rapport de réduction théorique
Fast rapide Normal normal Slow lent Fast Real rapide Rapport de reduction réduction ration réelle Normal normal Slow lent Spindle a turn wheel [mm] Course tigestroke pour for un tour deoflathe roueworm hélicoïdale Spindle turn un of the screw rapide stroke Coursefor tigea pour tourworm de la vis sansfast fin [mm] [mm] Normal normal Slow lent Fast RunningRendement efficiency [%] rapide Normal normal Slow lent Operation temperature Température d'exercice [°C] 35 Weight of the trapezoidal screwpour for 100 mm [kg] Poids vis trapézoïdale 2100 Weight of the screw jackPoids (screw not (sans included) vérin vis) [kg]
39
dimensioning
9010 35000 100x12 1/10 1/30 3/30 1/30 12 1,2 0,4 18 12
C – THE EQUIVALENT LOAD All the values listed in the catalogue refer to standard use conditions, i.e. under a temperature of 20 °C and working percentage of 10%. For different operation conditions the equivalent load should be calculated: it refers to the load which would be applied in standard conditions in order to have the same thermal exchange and wear effects, which the real load achieves in the real conditions of use. It is therefore advisable to calculate the equivalent load according to the following formula: Ce = C•ft•fa•fs
The temperature factor ft
By means of the following diagram an ft factor can be calculated according to the ambient temperature. In case of temperatures higher than 80 °C we suggest ing our technical office.
3
temperature factor ft
2,5 2 1,5 1 0,5 0 10
20
30
40
50
60
70
80
temperature [°C]
The ambient factor fa
By means of the following table it is possible to calculate the fa factor according to the operation conditions. Type of load Light shocks, few insertions, regular movements Medium shocks, frequent insertions, regular movements High shocks, many insertions, irregular movements
40
Ambient factor fa 1 1,2 1,8
The service factor fs The service factor fs is obtained by evaluating the working cycle and calculating the operation percentage on that interval. For example a working time of 10 minutes and non working time of 10 minutes correspond to 50%; similarly a working time of 5 minutes and a non working time of 20 minutes correspond to 20%. Based on the working data, choosing the cycle time and the operation percentage it is possible to read the fs value on the ordinate axis.
service factor fs
5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 5
10
20
30
50
75
100
Working percentage [%]
With the aid of the descriptive tables it is possible to check whether the previously chosen size is able to an issible dynamic load equal to the equivalent load. If not, it is necessary to effect a second choice.
D – THE POWER TABLES AND THE EQUIVALENT POWER The power tables are listed from page 46 to page 59. Choosing the tables referring to the size selected in paragraph C and putting the equivalent load values as well as the translation speed values in the table, it is possible to obtain the equivalent power Pe value. If the crossing values fall into the coloured area, this means that the application conditions could cause negative phenomena such as overheating and strong wear. It is therefore necessary to reduce the translation speed or to increase the size.
41
dimensioning
The equivalent power is not the power requested by the single screw jack, unless the three correction factors ft, fa and fs have a unit value.
E – BUCKLING In case of compression load, even occasional, it is necessary to check the buckling structure. Firstly the two constraints which the screw jack have to be determined: the first one is on the end fitting for TP models and on the lead nut for TPR models, while the second one is the way the casing is grounded. Most part of the real cases can be schematized according to three models, as listed below: End fitting – lead nut
Screw jack
Free Hinge Sleeve
Fitted in Hinge Fitted in
Euler I Euler II Euler III
Once the Euler case has been determined which most fits to the current application, it is necessary to find in the corresponding diagram the point corresponding to the coordinates (length; load). The sizes suited to the application are those whose curves subtend the above point. In case the size chosen at paragraph D does not meet such requisites it is necessary to choose a higher size. The Euler-Gordon-Rankine curves have been calculated with a factor of safety equal to 4. For applications which can factors of safety lower than 4 we suggest ing our technical office. EULER 1
EULER 1
10.000
EULER 1
100.000
559 407 7010 8010
306
10.000
Maximum buckling load [daN]
EULER 2
Maximum buckling load [daN]
1.000 204
183
100 0
250
500
750
1000
1250
Spindle length [mm]
EULER 1
180.000
EULER 3
160.000 140.000 120.000 25022
Maximum buckling load [daN]
100.000 20018
80.000 14014
60.000 40.000 20.000 0 0
42
16016
1000
2000
Spindle length [mm]
3000
4000
5000
6000
12014
1.000 0
250 500 750 1000 1250 1500 1750 2000 2250 2500 2750
Spindle length [mm]
200.000
9010 10012
EULER 2
10.000
EULER 3
10.000
559
559
407
407
1.000 Maximum buckling load [daN]
Maximum buckling load [daN]
306
306
1.000 204 183
100 0
250
500
204 183
100
750 1000 1250 1500 1750 2000 2250
0
Spindle length [mm]
500
1000
1500
2000
2500
3000
Spindle length [mm]
EULER 3
EULER 2 100.000
100.000
12014
7010
10012
1.000
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0
Spindle length [mm]
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Spindle length [mm]
EULER 2 200.000
200.000
180.000
180.000
EULER 3
25022
25022
160.000
140.000
140.000
120.000
120.000
20018
20018
100.000
80.000 14014
60.000
Maximum buckling load [daN]
100.000
16016
40.000 20.000 0 0
1000
2000
Spindle length [mm]
3000
4000
5000
6000
16016
80.000 14014
60.000 40.000 20.000 0 0
1000
2000
Spindle length [mm]
3000
4000
5000
6000
43
dimensioning
160.000
Maximum buckling load [daN]
10012
10.000
1.000 0
8010
7010
Maximum buckling load [daN]
Maximum buckling load [daN]
10.000
9010
12014
9010
8010
F – THE LATERAL LOAD As stated in the previous paragraphs lateral loads are the main cause of failures. In addition to the misalignment of the threaded spindle and the load, they can be caused by inaccurate mountings which force the threaded spindle in an anomalous position. As a consequence the coupling between lead nut and threaded spindle for TPR model and between the threaded spindle and the worm wheel for the TP model will be wrong.The application of double serial guides allows, for TP models, a partial correction of the anomalous position of the threaded spindle before ing the worm wheel. The problem is transformed into a sliding of the threaded spindle on the guides themselves. In TPR model, it is the outer nut which s the threaded spindle and it is therefore not possible to apply any corrections, unless particular mountings are applied as illustrated in the paragraph “lateral backlash in TPR models”. Lateral loads can even derive from an horizontal mounting: the threaded spindle own weight causes a bending of the same, becoming in this way a lateral load. The border value for the bending and the consequent lateral load depends on the screw jack size and on the threaded spindle length. It is advisable to our technical office in order to foresee the suitable s. The following diagrams, which are valid for static loads, show the issible lateral load value, according to the size and the length of the threaded spindle. For dynamic applications it is necessary to ask to the technical office.
maximum static lateral load [daN]
1.000
100 559
407
306
10
204
183
1
0
500
1000
1500
2000
spindle length [mm]
maximum static lateral load [daN]
10.000
14014
1.000
16016
25022
20018
12014
100
8010
7010
0
500
1000
9010 10012
1500
2000
spindle length [mm]
In case the size chosen in the previous paragraphs is not enough to a particular lateral load, a suitable size should be chosen.
G – THE TORQUE At this stage it is possible to calculate the power requested by the mounting. The following formula will be used to calculate this value: P=
1 n•C•v • 1000 6000•ηm•ηc•ηs
where: P = n = C = v = ηm = ηc = η 44 s =
requested power [kW] number of screw jacks unit load [daN] translation speed [mm/min] screw jack running efficiency (see descriptive tables) configuration running efficiency = 1 - [(N-1) • 0,05], where N is the total number of screw jacks and gear boxes structure running efficiency (guides, belts, pulleys, shafts, ts, reducers)
In order to complete the calculation of the requested power it is necessary to calculate the torque which should be transmitted by the drive shaft: Mtm =
955•P ωm
where: Mtm = is the torque on the drive shaft [daNm] P = is the motor power [kW] ωm = is the angular speed of the motor [rpm]
According to the applied mounting scheme it is necessary to check that the worm screw will be able to hold out under a possible combined torque. In the following table the issible torque values are listed for the worm screws according to their size and expressed as [daNm].
Size 183 Fast ratio [daNm] 2,30 Normal ratio [daNm] 2,30 Slow ratio [daNm] -
204 5,43 5,43 4,18
306 6,90 15,4 18,3
407 49,0 12,8 15,4
559 49,0 12,8 15,4
7010 84,7 84,7 49,0
8010 84,7 84,7 49,0
9010 10012 12014 14014 16016 20018 25022 202 522 522 823 823 2847 2847 202 441 441 984 984 2847 2847
In case the above values are exceeded it will be necessary to choose a higher size, to change the mounting scheme or to increase the speed, in accordance to what has been indicated in the previous paragraphs.
H - RADIAL LOADS
Size Frv [daN]
183 10
204 22
306 45
407 60
559 60
7010 90
8010 90
9010 10012 12014 14014 16016 20018 25022 100 250 250 300 300 380 380
In case the above values are exceeded it will be necessary to choose a higher size, to change the mounting scheme or to increase the speed, in accordance to what has been indicated in the previous paragraphs. 45
dimensioning
In case of radial loads on the worm screw it is necessary to check their strength according to the following table:
Size 183 Ratio 1/5 Load [daN] Worm screw rotation speed ωv [rpm] 1500 1000 750 500 300 100 50
Threaded spindle translation speed v [mm/min] 900 600 450 300 180 60 30
500
400
300
200
100
50
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
0,25 0,17 0,13 0,09 0,07 0,07 0,07
0,21 0,14 0,10 0,07 0,07 0,07 0,07
0,15 0,10 0,08 0,07 0,07 0,07 0,07
0,10 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,17 0,17 0,17 0,17 0,17 0,17 0,17
0,14 0,14 0,14 0,14 0,14 0,14 0,14
0,10 0,10 0,10 0,10 0,10 0,10 0,10
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,03 0,03 0,03 0,03 0,03 0,03 0,03
0,03 0,03 0,03 0,03 0,03 0,03 0,03
Ratio 1/20 Load [daN] Worm screw rotation speed ωv [rpm] 1500 1000 750 500 300 100 50
46
Threaded spindle translation speed v [mm/min] 225 150 112,5 75 45 15 7,5
500
400
300
200
100
50
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
0,08 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,06 0,06 0,06 0,06 0,06 0,06 0,06
0,05 0,05 0,05 0,05 0,05 0,05 0,05
0,04 0,04 0,04 0,04 0,04 0,04 0,04
0,04 0,04 0,04 0,04 0,04 0,04 0,04
0,04 0,04 0,04 0,04 0,04 0,04 0,04
0,04 0,04 0,04 0,04 0,04 0,04 0,04
Size 204 Ratio 1/5 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 1200 1000 800 750 600 500 400 300 240 100 80 50 40
1000 Pi Mtv [kW] [daNm]
0,64 0,43 0,32 0,21 0,13 0,07 0,07
0,42 0,42 0,42 0,42 0,42 0,42 0,42
800 Pi Mtv [kW] [daNm]
600 Pi Mtv [kW] [daNm]
400 Pi Mtv [kW] [daNm]
300 Pi Mtv [kW] [daNm]
200 Pi Mtv [kW] [daNm]
100 Pi Mtv [kW] [daNm]
0,51 0,34 0,26 0,17 0,11 0,07 0,07
0,38 0,26 0,19 0,13 0,11 0,07 0,07
0,26 0,17 0,13 0,09 0,07 0,07 0,07
0,19 0,13 0,10 0,07 0,07 0,07 0,07
0,13 0,09 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,33 0,33 0,33 0,33 0,33 0,33 0,33
0,25 0,25 0,25 0,25 0,25 0,25 0,25
0,17 0,17 0,17 0,17 0,17 0,17 0,17
0,13 0,13 0,13 0,13 0,13 0,13 0,13
0,09 0,09 0,09 0,09 0,09 0,09 0,09
0,05 0,05 0,05 0,05 0,05 0,05 0,05
Ratio 1/10 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 600 1000 400 750 300 500 200 300 120 100 40 50 20
1000 Pi Mtv [kW] [daNm]
800
600
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
400 Pi Mtv [kW] [daNm]
300 Pi Mtv [kW] [daNm]
200 Pi Mtv [kW] [daNm]
100 Pi Mtv [kW] [daNm]
0,36 0,24 0,18 0,12 0,07 0,07 0,07
0,30 0,20 0,15 0,10 0,07 0,07 0,07
0,22 0,14 0,11 0,07 0,07 0,07 0,07
0,14 0,09 0,07 0,07 0,07 0,07 0,07
0,11 0,07 0,07 0,07 0,07 0,07 0,07
0,08 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,23 0,23 0,23 0,23 0,23 0,23 0,23
0,19 0,19 0,19 0,19 0,19 0,19 0,19
0,14 0,14 0,14 0,14 0,14 0,14 0,14
0,09 0,09 0,09 0,09 0,09 0,09 0,09
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,05 0,05 0,05 0,05 0,05 0,05 0,05
0,03 0,03 0,03 0,03 0,03 0,03 0,03
Ratio 1/30 Load [daN]
1000
800
600
400
300
200
Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 200 1000 133 750 100 500 67 300 40 100 13 50 6,7
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
Pi Mtv [kW] [daNm]
0,17 0,12 0,08 0,07 0,07 0,07 0,07
0,13 0,08 0,07 0,07 0,07 0,07 0,07
0,11 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,08 0,08 0,08 0,08 0,08 0,08 0,08
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,05 0,05 0,05 0,05 0,05 0,05 0,05
0,03 0,03 0,03 0,03 0,03 0,03 0,03
0,03 0,03 0,03 0,03 0,03 0,03 0,03
0,03 0,03 0,03 0,03 0,03 0,03 0,03
47
power tables
0,11 0,11 0,11 0,11 0,11 0,11 0,11
100
Size 306 Ratio 1/5 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 1800 1000 1200 750 900 500 600 300 360 100 120 50 60
2500 Pi Mtv [kW] [daNm]
2000 Pi Mtv [kW] [daNm]
1500 Pi Mtv [kW] [daNm]
1000 Pi Mtv [kW] [daNm]
750 Pi Mtv [kW] [daNm]
500 Pi Mtv [kW] [daNm]
250 Pi Mtv [kW] [daNm]
2,45 1,64 1,23 0,82 0,49 0,17 0,10
1,96 1,31 0,98 0,66 0,40 0,13 0,10
1,47 0,98 0,74 0,49 0,30 0,10 0,10
0,98 0,65 0,49 0,33 0,20 0,10 0,10
0,74 0,49 0,37 0,25 0,15 0,10 0,10
0,49 0,33 0,25 0,17 0,10 0,10 0,10
0,25 0,17 0,13 0,10 0,10 0,10 0,10
1,60 1,60 1,60 1,60 1,60 1,60 1,60
1,28 1,28 1,28 1,28 1,28 1,28 1,28
0,96 0,96 0,96 0,96 0,96 0,96 0,96
0,64 0,64 0,64 0,64 0,64 0,64 0,64
0,48 0,48 0,48 0,48 0,48 0,48 0,48
0,32 0,32 0,32 0,32 0,32 0,32 0,32
0,17 0,17 0,17 0,17 0,17 0,17 0,17
Ratio 1/10 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 900 1000 600 750 450 500 300 300 180 100 60 50 30
2500 Pi Mtv [kW] [daNm]
2000 Pi Mtv [kW] [daNm]
1500 Pi Mtv [kW] [daNm]
1000 Pi Mtv [kW] [daNm]
750 Pi Mtv [kW] [daNm]
500 Pi Mtv [kW] [daNm]
250 Pi Mtv [kW] [daNm]
1,43 0,96 0,72 0,48 0,28 0,10 0,10
1,14 0,76 0,57 0,38 0,23 0,10 0,10
0,86 0,58 0,43 0,28 0,18 0,10 0,10
0,57 0,38 0,29 0,19 0,12 0,10 0,10
0,43 0,29 0,22 0,15 0,10 0,10 0,10
0,29 0,20 0,15 0,10 0,10 0,10 0,10
0,16 0,10 0,10 0,10 0,10 0,10 0,10
0,93 0,93 0,93 0,93 0,93 0,93 0,93
0,74 0,74 0,74 0,74 0,74 0,74 0,74
0,56 0,56 0,56 0,56 0,56 0,56 0,56
0,37 0,37 0,37 0,37 0,37 0,37 0,37
0,28 0,28 0,28 0,28 0,28 0,28 0,28
0,19 0,19 0,19 0,19 0,19 0,19 0,19
0,10 0,10 0,10 0,10 0,10 0,10 0,10
Ratio 1/30 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 300 1000 200 750 150 500 100 300 60 100 20 50 10
48
2500 Pi Mtv [kW] [daNm]
2000 Pi Mtv [kW] [daNm]
1500 Pi Mtv [kW] [daNm]
1000 Pi Mtv [kW] [daNm]
750 Pi Mtv [kW] [daNm]
500 Pi Mtv [kW] [daNm]
250 Pi Mtv [kW] [daNm]
0,68 0,45 0,34 0,23 0,14 0,07 0,07
0,56 0,37 0,28 0,19 0,11 0,11 0,11
0,42 0,28 0,21 0,14 0,08 0,08 0,08
0,28 0,19 0,14 0,10 0,07 0,07 0,07
0,22 0,14 0,11 0,07 0,07 0,07 0,07
0,14 0,10 0,07 0,07 0,07 0,07 0,07
0,07 0,07 0,07 0,07 0,07 0,07 0,07
0,44 0,44 0,44 0,44 0,44 0,44 0,44
0,36 0,36 0,36 0,36 0,36 0,36 0,36
0,27 0,27 0,27 0,27 0,27 0,27 0,27
0,18 0,18 0,18 0,18 0,18 0,18 0,18
0,14 0,14 0,14 0,14 0,14 0,14 0,14
0,09 0,09 0,09 0,09 0,09 0,09 0,09
0,05 0,05 0,05 0,05 0,05 0,05 0,05
Size 407 Ratio 1/5 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 2100 1000 1400 750 1050 500 700 300 420 100 140 50 70
5000 Pi Mtv [kW] [daNm]
4000 Pi Mtv [kW] [daNm]
3000 Pi Mtv [kW] [daNm]
2000 Pi Mtv [kW] [daNm]
1500 Pi Mtv [kW] [daNm]
1000 Pi Mtv [kW] [daNm]
500 Pi Mtv [kW] [daNm]
6,13 4,09 3,06 2,04 1,23 0,41 0,21
4,90 3,27 2,45 1,64 0,98 0,33 0,17
3,68 2,15 1,80 1,23 0,74 0,25 0,13
2,45 1,64 1,23 0,82 0,49 0,17 0,10
1,84 1,23 0,92 0,62 0,37 0,13 0,10
1,23 0,82 0,62 0,41 0,25 0,10 0,10
0,62 0,41 0,31 0,21 0,13 0,10 0,10
3,98 3,98 3,98 3,98 3,98 3,98 3,98
3,18 3,18 3,18 3,18 3,18 3,18 3,18
2,39 2,39 2,39 2,39 2,39 2,39 2,39
1,59 1,59 1,59 1,59 1,59 1,59 1,59
1,20 1,20 1,20 1,20 1,20 1,20 1,20
0,80 0,80 0,80 0,80 0,80 0,80 0,80
0,40 0,40 0,40 0,40 0,40 0,40 0,40
Ratio 1/10 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 1050 1000 700 750 525 500 350 300 210 100 70 50 35
5000 Pi Mtv [kW] [daNm]
4000 Pi Mtv [kW] [daNm]
3000 Pi Mtv [kW] [daNm]
2000 Pi Mtv [kW] [daNm]
1500 Pi Mtv [kW] [daNm]
1000 Pi Mtv [kW] [daNm]
500 Pi Mtv [kW] [daNm]
3,60 2,40 1,77 1,18 0,71 0,24 0,12
2,80 1,85 1,40 0,92 0,56 0,19 0,10
2,10 1,38 1,00 0,69 0,42 0,14 0,10
1,40 0,92 0,70 0,46 0,28 0,10 0,10
1,05 0,69 0,52 0,35 0,21 0,10 0,10
0,70 0,46 0,35 0,23 0,14 0,10 0,10
0,35 0,23 0,18 0,12 0,10 0,10 0,10
2,30 2,30 2,30 2,30 2,30 2,30 2,30
1,80 1,80 1,80 1,80 1,80 1,80 1,80
1,34 1,34 1,34 1,34 1,34 1,34 1,34
0,90 0,90 0,90 0,90 0,90 0,90 0,90
0,67 0,67 0,67 0,67 0,67 0,67 0,67
0,45 0,45 0,45 0,45 0,45 0,45 0,45
0,23 0,23 0,23 0,23 0,23 0,23 0,23
Ratio 1/30 5000 Pi Mtv [kW] [daNm]
4000 Pi Mtv [kW] [daNm]
3000 Pi Mtv [kW] [daNm]
2000 Pi Mtv [kW] [daNm]
1500 Pi Mtv [kW] [daNm]
1000 Pi Mtv [kW] [daNm]
500 Pi Mtv [kW] [daNm]
1,69 1,13 0,85 0,56 0,34 0,12 0,07
1,26 0,84 0,63 0,42 0,25 0,08 0,07
0,95 0,64 0,48 0,32 0,19 0,07 0,07
0,63 0,42 0,32 0,21 0,13 0,07 0,07
0,48 0,32 0,24 0,16 0,10 0,07 0,07
0,32 0,21 0,16 0,11 0,07 0,07 0,07
0,17 0,11 0,08 0,07 0,07 0,07 0,07
1,10 1,10 1,10 1,10 1,10 1,10 1,10
0,82 0,82 0,82 0,82 0,82 0,82 0,82
0,62 0,62 0,62 0,62 0,62 0,62 0,62
0,41 0,41 0,41 0,41 0,41 0,41 0,41
0,31 0,31 0,31 0,31 0,31 0,31 0,31
0,21 0,21 0,21 0,21 0,21 0,21 0,21
0,11 0,11 0,11 0,11 0,11 0,11 0,11
49
power tables
Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 350 1000 233 750 175 500 117 300 70 100 23 50 11,7
Size 559 Ratio 1/5 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 2700 1000 1800 750 1350 500 900 300 540 100 180 50 90
10000 Pi Mtv [kW] [daNm]
7500 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
4000 Pi Mtv [kW] [daNm]
3000 Pi Mtv [kW] [daNm]
2000 Pi Mtv [kW] [daNm]
1000 Pi Mtv [kW] [daNm]
17,7 11,8 8,83 5,88 3,53 1,18 0,57
13,3 8,83 6,62 4,42 2,65 0,88 0,44
8,83 5,89 4,42 2,94 1,77 0,59 0,30
7,06 4,71 3,53 2,36 1,42 0,47 0,24
5,30 3,53 2,65 1,77 1,06 0,36 0,18
3,53 2,36 1,77 1,18 0,71 0,24 0,12
1,77 1,18 0,89 0,59 0,36 0,12 0,10
11,5 11,5 11,5 11,5 11,5 11,5 11,5
8,60 8,60 8,60 8,60 8,60 8,60 8,60
5,74 5,74 5,74 5,74 5,74 5,74 5,74
4,58 4,58 4,58 4,58 4,58 4,58 4,58
3,44 3,44 3,44 3,44 3,44 3,44 3,44
2,29 2,29 2,29 2,29 2,29 2,29 2,29
1,15 1,15 1,15 1,15 1,15 1,15 1,15
Ratio 1/10 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 1350 1000 900 750 675 500 450 300 270 100 90 50 45
10000 Pi Mtv [kW] [daNm]
7500 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
4000 Pi Mtv [kW] [daNm]
3000 Pi Mtv [kW] [daNm]
2000 Pi Mtv [kW] [daNm]
1000 Pi Mtv [kW] [daNm]
10,0 6,70 5,00 3,30 2,00 0,67 0,33
7,50 5,00 3,77 2,50 1,50 0,50 0,25
5,00 3,40 2,50 1,67 1,00 0,33 0,17
4,00 2,70 2,00 1,33 0,80 0,27 0,13
3,10 2,10 1,54 1,03 0,62 0,20 0,10
2,00 1,35 1,00 0,67 0,40 0,13 0,10
1,00 0,67 0,50 0,33 0,20 0,10 0,10
6,50 6,50 6,50 6,50 6,50 6,50 6,50
4,90 4,90 4,90 4,90 4,90 4,90 4,90
3,25 3,25 3,25 3,25 3,25 3,25 3,25
2,60 2,60 2,60 2,60 2,60 2,60 2,60
2,00 2,00 2,00 2,00 2,00 2,00 2,00
1,30 1,30 1,30 1,30 1,30 1,30 1,30
0,65 0,65 0,65 0,65 0,65 0,65 0,65
Ratio 1/30 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 450 1000 300 750 225 500 150 300 90 100 30 50 15
50
10000 Pi Mtv [kW] [daNm]
7500 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
4000 Pi Mtv [kW] [daNm]
3000 Pi Mtv [kW] [daNm]
2000 Pi Mtv [kW] [daNm]
1000 Pi Mtv [kW] [daNm]
4,30 2,90 2,16 1,44 0,86 0,29 0,14
3,30 2,16 1,62 1,10 0,65 0,22 0,11
2,20 1,44 1,08 0,72 0,43 0,15 0,07
1,73 1,15 0,86 0,58 0,35 0,12 0,07
1,30 0,86 0,65 0,43 0,26 0,09 0,07
0,86 0,58 0,43 0,29 0,18 0,07 0,07
0,43 0,29 0,22 0,15 0,09 0,07 0,07
2,80 2,80 2,80 2,80 2,80 2,80 2,80
2,10 2,10 2,10 2,10 2,10 2,10 2,10
1,40 1,40 1,40 1,40 1,40 1,40 1,40
1,12 1,12 1,12 1,12 1,12 1,12 1,12
0,84 0,84 0,84 0,84 0,84 0,84 0,84
0,56 0,56 0,56 0,56 0,56 0,56 0,56
0,28 0,28 0,28 0,28 0,28 0,28 0,28
Size 7010 Ratio 1/5 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 3000 1000 2000 750 1500 500 1000 300 600 100 200 50 100
20000 Pi Mtv [kW] [daNm]
17500 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
7500 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
2500 Pi Mtv [kW] [daNm]
42,6 28,4 21,3 14,2 8,53 2,84 1,42
37,3 24,9 18,7 12,4 7,46 2,49 1,24
32,0 21,3 16,0 10,7 6,39 2,13 1,07
21,3 14,2 10,7 7,10 4,26 1,42 0,71
16,0 10,7 8,00 5,33 3,20 1,07 0,53
10,7 7,10 5,33 3,55 2,13 0,71 0,36
5,33 3,55 2,66 1,78 1,07 0,36 0,18
27,7 27,7 27,7 27,7 27,7 27,7 27,7
24,3 24,3 24,3 24,3 24,3 24,3 24,3
20,8 20,8 20,8 20,8 20,8 20,8 20,8
13,8 13,8 13,8 13,8 13,8 13,8 13,8
10,4 10,4 10,4 10,4 10,4 10,4 10,4
6,95 6,95 6,95 6,95 6,95 6,95 6,95
3,46 3,46 3,46 3,46 3,46 3,46 3,46
Ratio 1/10 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 1500 1000 1000 750 750 500 500 300 300 100 100 50 50
20000 Pi Mtv [kW] [daNm]
17500 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
7500 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
2500 Pi Mtv [kW] [daNm]
23,4 15,6 11,7 7,80 4,68 1,56 0,78
20,5 13,7 10,2 6,80 4,10 1,37 0,68
17,6 11,7 8,80 5,90 3,50 1,17 0,58
11,7 7,80 5,90 3,90 2,34 0,78 0,39
8,80 5,90 4,40 2,92 1,75 0,59 0,29
5,86 3,90 2,92 1,95 1,17 0,39 0,20
2,93 1,95 1,46 0,98 0,58 0,20 0,10
15,2 15,2 15,2 15,2 15,2 15,2 15,2
13,3 13,3 13,3 13,3 13,3 13,3 13,3
11,4 11,4 11,4 11,4 11,4 11,4 11,4
7,60 7,60 7,60 7,60 7,60 7,60 7,60
5,70 5,70 5,70 5,70 5,70 5,70 5,70
3,80 3,80 3,80 3,80 3,80 3,80 3,80
1,90 1,90 1,90 1,90 1,90 1,90 1,90
Ratio 1/30 20000 Pi Mtv [kW] [daNm]
17500 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
7500 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
2500 Pi Mtv [kW] [daNm]
11,7 7,80 5,85 3,90 2,34 0,78 0,39
10,3 6,90 5,16 3,44 2,06 0,69 0,34
8,80 5,90 4,40 2,92 1,76 0,59 0,30
5,90 3,90 2,93 1,95 1,17 0,39 0,20
4,50 3,00 2,23 1,49 0,89 0,30 0,14
2,90 2,00 1,46 0,98 0,58 0,20 0,10
1,46 1,00 0,73 0,49 0,29 0,10 0,07
7,60 7,60 7,60 7,60 7,60 7,60 7,60
6,70 6,70 6,70 6,70 6,70 6,70 6,70
5,70 5,70 5,70 5,70 5,70 5,70 5,70
3,80 3,80 3,80 3,80 3,80 3,80 3,80
2,90 2,90 2,90 2,90 2,90 2,90 2,90
1,90 1,90 1,90 1,90 1,90 1,90 1,90
0,95 0,95 0,95 0,95 0,95 0,95 0,95
51
power tables
Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 500 1000 333 750 250 500 167 300 100 100 33 50 16,7
Size 8010 Ratio 1/5 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 3000 1000 2000 750 1500 500 1000 300 600 100 200 50 100
25000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
7500 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
2500 Pi Mtv [kW] [daNm]
55,7 37,2 27,9 18,6 11,2 3,72 1,86
44,6 29,7 22,3 14,9 8,92 2,97 1,49
33,4 22,3 16,7 11,2 6,68 2,23 1,12
22,3 14,9 11,2 7,43 4,46 1,49 0,75
16,7 11,2 6,68 5,57 3,34 1,12 0,56
11,2 7,43 5,57 3,72 2,23 0,75 0,38
5,57 3,72 2,79 1,86 1,12 0,38 0,19
36,2 36,2 36,2 36,2 36,2 36,2 36,2
29,0 29,0 29,0 29,0 29,0 29,0 29,0
21,7 21,7 21,7 21,7 21,7 21,7 21,7
14,5 14,5 14,5 14,5 14,5 14,5 14,5
10,9 10,9 10,9 10,9 10,9 10,9 10,9
7,24 7,24 7,24 7,24 7,24 7,24 7,24
3,62 3,62 3,62 3,62 3,62 3,62 3,62
Ratio 1/10 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 1500 1000 1000 750 750 500 500 300 300 100 100 50 50
25000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
7500 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
2500 Pi Mtv [kW] [daNm]
30,8 20,5 15,4 10,3 6,16 2,06 1,02
24,5 16,4 12,3 8,20 4,90 1,65 0,82
18,4 12,3 9,24 6,16 3,70 1,24 0,61
12,3 8,20 6,16 4,10 2,50 0,82 0,41
9,20 6,02 4,62 3,08 1,85 0,62 0,31
6,20 4,10 3,08 2,05 1,23 0,41 0,21
3,10 2,05 1,54 1,03 0,62 0,21 0,11
20,0 20,0 20,0 20,0 20,0 20,0 20,0
16,0 16,0 16,0 16,0 16,0 16,0 16,0
12,0 12,0 12,0 12,0 12,0 12,0 12,0
8,00 8,00 8,00 8,00 8,00 8,00 8,00
6,00 6,00 6,00 6,00 6,00 6,00 6,00
4,00 4,00 4,00 4,00 4,00 4,00 4,00
2,00 2,00 2,00 2,00 2,00 2,00 2,00
Ratio 1/30 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 500 1000 333 750 250 500 167 300 100 100 33 50 16,7
52
25000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
7500 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
2500 Pi Mtv [kW] [daNm]
14,5 9,70 7,30 4,80 2,90 0,96 0,48
11,7 7,80 5,85 3,90 2,34 0,78 0,39
8,80 5,90 4,40 2,92 1,76 0,59 0,30
5,90 3,90 2,93 1,95 1,17 0,39 0,20
4,50 3,00 2,23 1,49 0,89 0,30 0,14
2,90 2,00 1,46 0,98 0,58 0,20 0,10
1,46 1,00 0,73 0,49 0,29 0,10 0,07
9,40 9,40 9,40 9,40 9,40 9,40 9,40
7,60 7,60 7,60 7,60 7,60 7,60 7,60
5,70 5,70 5,70 5,70 5,70 5,70 5,70
3,80 3,80 3,80 3,80 3,80 3,80 3,80
2,90 2,90 2,90 2,90 2,90 2,90 2,90
1,90 1,90 1,90 1,90 1,90 1,90 1,90
0,95 0,95 0,95 0,95 0,95 0,95 0,95
Size 9010 Ratio 1/10 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 1800 1000 1200 750 900 500 600 300 360 100 120 50 60
35000 Pi Mtv [kW] [daNm]
25000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
57,2 38,2 28,6 19,1 11,5 3,90 1,90
40,8 27,2 20,4 13,6 8,20 2,80 1,40
32,7 21,8 16,4 10,9 6,60 2,20 1,10
24,5 16,4 12,3 8,20 4,90 1,70 0,90
16,4 10,9 8,20 5,50 3,30 1,10 0,60
8,20 5,50 4,10 2,80 1,70 0,60 0,30
37,2 37,2 37,2 37,2 37,2 37,2 37,2
26,5 26,5 26,5 26,5 26,5 26,5 26,5
21,2 21,2 21,2 21,2 21,2 21,2 21,2
15,9 15,9 15,9 15,9 15,9 15,9 15,9
10,6 10,6 10,6 10,6 10,6 10,6 10,6
5,30 5,30 5,30 5,30 5,30 5,30 5,30
Ratio 1/30 35000 Pi Mtv [kW] [daNm]
25000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
28,6 19,1 14,3 9,60 5,80 1,90 1,00
20,4 13,6 10,2 6,90 4,10 1,40 0,70
16,4 10,9 8,20 5,50 3,30 1,10 0,60
12,3 8,20 6,20 4,10 2,50 0,90 0,50
8,20 5,50 4,10 2,80 1,70 0,60 0,30
4,10 2,80 2,10 1,40 0,90 0,30 0,20
18,6 18,6 18,6 18,6 18,6 18,6 18,6
13,3 13,3 13,3 13,3 13,3 13,3 13,3
10,7 10,7 10,7 10,7 10,7 10,7 10,7
8,00 8,00 8,00 8,00 8,00 8,00 8,00
5,40 5,40 5,40 5,40 5,40 5,40 5,40
2,70 2,70 2,70 2,70 2,70 2,70 2,70
53
power tables
Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 600 1000 400 750 300 500 200 300 120 100 40 50 20
Size 10012 Ratio 1/10 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 1800 1000 1200 750 900 500 600 300 360 100 120 50 60
40000 Pi Mtv [kW] [daNm]
30000 Pi Mtv [kW] [daNm]
25000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
65,4 43,6 32,7 21,8 13,1 4,36 2,18
49,0 32,7 24,5 16,4 9,80 3,27 1,64
40,8 27,2 20,4 13,6 8,17 2,72 1,36
32,7 21,8 16,4 10,9 6,54 2,18 1,09
24,5 16,4 12,3 8,16 4,90 1,64 0,82
16,4 10,9 8,16 5,45 3,27 1,09 0,55
8,16 5,45 4,08 2,73 1,64 0,55 0,28
42,5 42,5 42,5 42,5 42,5 42,5 42,5
31,8 31,8 31,8 31,8 31,8 31,8 31,8
26,5 26,5 26,5 26,5 26,5 26,5 26,5
21,2 21,2 21,2 21,2 21,2 21,2 21,2
15,9 15,9 15,9 15,9 15,9 15,9 15,9
10,6 10,6 10,6 10,6 10,6 10,6 10,6
5,30 5,30 5,30 5,30 5,30 5,30 5,30
Ratio 1/30 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 600 1000 400 750 300 500 200 300 120 100 40 50 20
54
40000 Pi Mtv [kW] [daNm]
30000 Pi Mtv [kW] [daNm]
25000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
32,7 21,8 16,4 10,9 6,54 2,18 1,09
24,5 16,4 12,3 8,17 4,90 1,64 0,82
20,4 13,6 10,2 6,81 4,08 1,36 0,68
16,4 10,9 8,17 5,45 3,27 1,09 0,55
12,3 8,17 6,13 4,09 2,45 0,82 0,41
8,17 5,45 4,09 2,72 1,64 0,55 0,28
4,09 2,72 2,05 1,36 0,82 0,28 0,14
21,3 21,3 21,3 21,3 21,3 21,3 21,3
15,9 15,9 15,9 15,9 15,9 15,9 15,9
13,3 13,3 13,3 13,3 13,3 13,3 13,3
10,7 10,7 10,7 10,7 10,7 10,7 10,7
7,99 7,99 7,99 7,99 7,99 7,99 7,99
5,32 5,32 5,32 5,32 5,32 5,32 5,32
2,66 2,66 2,66 2,66 2,66 2,66 2,66
Size 12014 Ratio 1/10 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 2100 1000 1400 750 1050 500 700 300 420 100 140 50 70
60000 Pi Mtv [kW] [daNm]
50000 Pi Mtv [kW] [daNm]
40000 Pi Mtv [kW] [daNm]
30000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
121 80,7 60,1 40,3 24,2 8,07 4,04
101 67,3 50,5 33,6 20,2 6,73 3,36
80,7 53,8 40,4 26,9 16,1 5,38 2,69
60,6 40,4 30,3 20,2 12,1 4,04 2,02
40,4 26,9 20,2 13,5 8,07 2,69 1,35
30,3 20,2 15,2 10,1 6,06 2,02 1,01
20,2 13,5 10,1 6,73 4,04 1,35 0,67
78,6 78,6 78,6 78,6 78,6 78,6 78,6
65,6 65,6 65,6 65,6 65,6 65,6 65,6
52,4 52,4 52,4 52,4 52,4 52,4 52,4
39,3 39,3 39,3 39,3 39,3 39,3 39,3
26,2 26,2 26,2 26,2 26,2 26,2 26,2
19,7 19,7 19,7 19,7 19,7 19,7 19,7
13,1 13,1 13,1 13,1 13,1 13,1 13,1
Ratio 1/30 60000 Pi Mtv [kW] [daNm]
50000 Pi Mtv [kW] [daNm]
40000 Pi Mtv [kW] [daNm]
30000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
15000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
62,5 41,5 31,2 20,8 12,5 4,10 2,05
52,0 34,6 26,0 17,3 10,4 3,42 1,71
41,6 27,7 20,8 13,8 8,32 2,73 1,37
31,2 20,8 15,6 10,4 6,24 2,05 1,03
20,8 13,9 10,4 6,92 4,16 1,37 0,69
15,6 10,4 7,80 5,20 3,12 1,03 0,52
10,4 6,92 5,20 3,46 2,08 0,68 0,34
40,5 40,5 40,5 40,5 40,5 40,5 40,5
33,8 33,8 33,8 33,8 33,8 33,8 33,8
27,0 27,0 27,0 27,0 27,0 27,0 27,0
20,3 20,3 20,3 20,3 20,3 20,3 20,3
13,5 13,5 13,5 13,5 13,5 13,5 13,5
10,2 10,2 10,2 10,2 10,2 10,2 10,2
6,75 6,75 6,75 6,75 6,75 6,75 6,75
55
power tables
Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 700 1000 466 750 350 500 233 300 140 100 46 50 23
Size 14014 Ratio 1/12 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 1750 1000 1166 750 875 500 583 300 350 100 116 50 58
80000 Pi Mtv [kW] [daNm]
60000 Pi Mtv [kW] [daNm]
40000 Pi Mtv [kW] [daNm]
30000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
143 95,3 71,5 47,6 28,6 9,48 4,73
107 71,5 53,6 35,7 21,5 7,11 3,56
71,5 47,6 35,8 23,8 14,3 4,74 2,37
53,6 35,7 26,8 17,9 10,8 3,56 1,78
35,8 23,9 17,9 11,9 7,15 2,37 1,19
17,9 11,9 8,94 5,96 3,58 1,19 0,60
8,94 5,96 4,47 2,98 1,79 0,60 0,30
92,9 92,9 92,9 92,9 92,9 92,9 92,9
69,6 69,6 69,6 69,6 69,6 69,6 69,6
46,5 46,5 46,5 46,5 46,5 46,5 46,5
34,8 34,8 34,8 34,8 34,8 34,8 34,8
23,3 23,3 23,3 23,3 23,3 23,3 23,3
11,7 11,7 11,7 11,7 11,7 11,7 11,7
5,81 5,81 5,81 5,81 5,81 5,81 5,81
Ratio 1/36 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 583 1000 388 750 291 500 194 300 116 100 38 50 19
56
80000 Pi Mtv [kW] [daNm]
60000 Pi Mtv [kW] [daNm]
40000 Pi Mtv [kW] [daNm]
30000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
5000 Pi Mtv [kW] [daNm]
76,1 50,6 38,1 25,4 15,2 4,97 2,49
57,1 38,0 28,6 19,1 11,4 3,73 1,87
38,1 25,3 19,1 12,7 7,59 2,49 1,25
28,6 19,0 14,3 9,51 5,69 1,87 0,94
19,1 12,7 9,51 6,34 3,80 1,25 0,63
9,51 6,33 4,76 3,17 1,90 0,63 0,32
4,76 3,17 2,38 1,59 0,95 0,32 0,16
49,4 49,4 49,4 49,4 49,4 49,4 49,4
37,1 37,1 37,1 37,1 37,1 37,1 37,1
24,8 24,8 24,8 24,8 24,8 24,8 24,8
18,6 18,6 18,6 18,6 18,6 18,6 18,6
12,4 12,4 12,4 12,4 12,4 12,4 12,4
6,18 6,18 6,18 6,18 6,18 6,18 6,18
3,10 3,10 3,10 3,10 3,10 3,10 3,10
Size 16016 Ratio 1/12 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 2000 1000 1333 750 1000 500 667 300 400 100 133 50 66,6
100000 Pi Mtv [kW] [daNm]
80000 Pi Mtv [kW] [daNm]
60000 Pi Mtv [kW] [daNm]
40000 Pi Mtv [kW] [daNm]
30000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
218 145 109 72,6 43,6 14,5 7,26
174 116 87,0 58,1 34,9 11,6 5,81
131 87,0 65,4 43,6 26,1 8,71 4,36
87,0 58,0 43,6 29,0 17,4 5,81 2,90
65,0 43,6 32,7 21,8 13,1 4,36 2,18
43,6 29,0 21,8 14,5 8,71 2,90 1,45
21,8 14,5 10,9 7,26 4,36 1,45 0,73
141 141 141 141 141 141 141
113 113 113 113 113 113 113
85,0 85,0 85,0 85,0 85,0 85,0 85,0
56,5 56,5 56,5 56,5 56,5 56,5 56,5
42,5 42,5 42,5 42,5 42,5 42,5 42,5
28,3 28,3 28,3 28,3 28,3 28,3 28,3
14,2 14,2 14,2 14,2 14,2 14,2 14,2
Ratio 1/36 100000 Pi Mtv [kW] [daNm]
80000 Pi Mtv [kW] [daNm]
60000 Pi Mtv [kW] [daNm]
40000 Pi Mtv [kW] [daNm]
30000 Pi Mtv [kW] [daNm]
20000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
121 80,7 60,5 40,4 24,2 8,06 4,03
96,8 64,5 48,5 32,3 19,4 6,45 3,22
72,6 48,4 36,3 24,2 14,5 4,84 2,42
48,4 32,3 24,2 16,1 9,68 3,22 1,61
36,3 24,2 18,2 12,1 7,26 2,42 1,21
24,2 16,1 12,1 8,07 4,84 1,61 0,81
12,1 8,07 6,05 4,03 2,42 0,81 0,41
78,6 78,6 78,6 78,6 78,6 78,6 78,6
62,8 62,8 62,8 62,8 62,8 62,8 62,8
47,2 47,2 47,2 47,2 47,2 47,2 47,2
31,5 31,5 31,5 31,5 31,5 31,5 31,5
23,6 23,6 23,6 23,6 23,6 23,6 23,6
15,7 15,7 15,7 15,7 15,7 15,7 15,7
7,86 7,86 7,86 7,86 7,86 7,86 7,86
57
power tables
Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 666 1000 444 750 333 500 222 300 133 100 44 50 22
Size 20018 Ratio 1/12 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 2250 1000 1500 750 1125 500 750 300 450 100 150 50 75
150000 Pi Mtv [kW] [daNm]
130000 Pi Mtv [kW] [daNm]
100000 Pi Mtv [kW] [daNm]
80000 Pi Mtv [kW] [daNm]
50000 Pi Mtv [kW] [daNm]
25000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
350 237 179 122 75,0 26,8 13,8
284 192 146 98,9 60,4 21,8 11,2
219 148 112 75,9 46,4 16,7 8,63
175 119 89,4 60,7 37,1 13,3 6,90
110 73,9 55,8 37,9 23,2 8,37 4,31
54,5 36,9 27,9 18,9 11,6 4,18 2,16
21,8 14,7 11,1 7,60 4,64 1,67 0,86
239 239 239 239 239 239 239
197 197 197 197 197 197 197
149 149 149 149 149 149 149
119 119 119 119 119 119 119
74,4 74,4 74,4 74,4 74,4 74,4 74,4
37,2 37,2 37,2 37,2 37,2 37,2 37,2
14,9 14,9 14,9 14,9 14,9 14,9 14,9
Ratio 1/36 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 750 1000 500 750 375 500 250 300 150 100 50 50 25
58
150000 Pi Mtv [kW] [daNm]
130000 Pi Mtv [kW] [daNm]
100000 Pi Mtv [kW] [daNm]
80000 Pi Mtv [kW] [daNm]
50000 Pi Mtv [kW] [daNm]
25000 Pi Mtv [kW] [daNm]
10000 Pi Mtv [kW] [daNm]
187 124 93,6 63,0 37,4 11,9 6,40
109 74,3 57,9 39,8 25,6 10,4 5,55
83,4 57,2 44,5 30,6 19,7 7,95 4,26
66,7 47,7 35,6 24,5 15,8 6,36 3,41
41,7 28,6 22,3 15,3 9,85 3,98 2,13
20,9 14,3 11,2 7,65 4,92 2,00 1,06
8,33 5,71 4,45 3,06 1,97 0,85 0,65
94,9 94,9 94,9 94,9 94,9 94,9 94,9
83,2 83,2 83,2 83,2 83,2 83,2 83,2
64,1 64,1 64,1 64,1 64,1 64,1 64,1
50,7 50,7 50,7 50,7 50,7 50,7 50,7
31,7 31,7 31,7 31,7 31,7 31,7 31,7
15,9 15,9 15,9 15,9 15,9 15,9 15,9
6,36 6,36 6,36 6,36 6,36 6,36 6,36
Size 25022 Ratio 1/12 Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 2750 1000 1833 750 1375 500 916 300 550 100 183 50 92
200000 Pi Mtv [kW] [daNm]
180000 Pi Mtv [kW] [daNm]
150000 Pi Mtv [kW] [daNm]
130000 Pi Mtv [kW] [daNm]
100000 Pi Mtv [kW] [daNm]
80000 Pi Mtv [kW] [daNm]
50000 Pi Mtv [kW] [daNm]
543 368 278 189 115 41,7 21,4
489 331 250 170 104 37,5 19,3
407 276 208 141 86,4 31,2 16,1
353 240 180 122 75,1 27,1 13,9
271 184 139 94,2 57,8 20,8 10,7
217 147 111 75,6 46,2 16,6 8,59
135 92,0 69,5 47,2 28,8 10,4 5,37
370 370 370 370 370 370 370
332 332 332 332 332 332 332
276 276 276 276 276 276 276
240 240 240 240 240 240 240
185 185 185 185 185 185 185
148 148 148 148 148 148 148
92,2 92,2 92,2 92,2 92,2 92,2 92,2
Ratio 1/36 200000 Pi Mtv [kW] [daNm]
180000 Pi Mtv [kW] [daNm]
150000 Pi Mtv [kW] [daNm]
130000 Pi Mtv [kW] [daNm]
100000 Pi Mtv [kW] [daNm]
80000 Pi Mtv [kW] [daNm]
50000 Pi Mtv [kW] [daNm]
207 142 110 76,2 49,0 19,7 10,6
186 128 99,6 68,5 44,1 17,8 9,54
155 106 83,0 57,1 36,7 14,8 7,95
134 92,4 72,0 49,5 31,8 12,8 6,89
103 71,1 55,3 38,1 24,5 9,90 5,30
82,9 56,8 44,3 30,4 19,6 7,92 4,24
51,8 35,5 27,6 19,0 12,2 4,95 2,65
157 157 157 157 157 157 157
141 141 141 141 141 141 141
117 117 117 117 117 117 117
101 101 101 101 101 101 101
78,0 78,0 78,0 78,0 78,0 78,0 78,0
62,8 62,8 62,8 62,8 62,8 62,8 62,8
39,1 39,1 39,1 39,1 39,1 39,1 39,1
59
power tables
Load [daN] Worm Threaded screw spindle rotation translation speed speed ωv [rpm] v [mm/min] 1500 916 1000 611 750 458 500 305 300 183 100 61 50 30
Series construction models
stroke
B model
S model
D model
TP Models XTP Models* Size A A1 A2 A3 A4 A5 B C1 d Ø j6 DØ -0,2 D1 Ø -0,3 D7 Ø E E1 E2 E3 FØ F1 F2 F4 F5 (n° of holes) H L M [°] S S1 S2 S6
60
183 118 70 56 7 7 4 3x3x15 15 9 18x3 30 94 80 29 35 9 30 24 50 25 10 10
* XTP Model: stainless steel version
204 150 100 80 10 7,5 4x4x20 15 12 20x4 44 60 100 85 32,5 37,5 9 M5x10 M5x12(4) 30 25 30 70 35 20 20
306 206 126 102 12 12 6x6x30 20 20 30x6 60 68 155 131 45 60 11 M6x12 M6x12(4) 50 40 45 90 45 25 25
407 270 160 130 15 15 8x7x40 25 25 40x7 69 86 195 165 50 75 13 M8x15 M8X16(4) 70 55 30 120 60 35 35
559 270 170 134 18 18 8x7x40 25 25 55x9 90 86 211 175 63 78 M20 30 M8x15 M8X16(4) 70 50 30 150 75 40 40
7010 350 230 180 25 25 8x7x50 25 30 70x10 120 74 280 230 75 115 M30 45 M10x18 M8x15(6) 90 60 30 176 88 40 40
8010 9010 350 390 230 250 180 200 25 25 25 25 8x7x50 12x8x60 25 40 30 40 80x10 100x12 120 150 74 100 280 320 230 270 75 85 115 125 M30 M30 45 45 M10x18 M10x18 M8x15(6) M10x18(4) 90 110 60 70 30 45 176 230 88 115 40 50 40 50
Series construction models
stroke
B model
S model
D model
Size A A1 A2 A3 A4 A5 B C1 d Ø j6 DØ -0,2 D1 Ø -0,3 E E1 E2 E3 F1 F2 F4 H L S S1 S2 S6
10012 490 320 230 45 25 5 16x10x70 40 55 100x12 210 405 355 105 160 M30 45 M12x25 140 85 270 135 50 50
12014 14014 16016 20018 25022 490 780 780 920 920 320 500 500 600 600 230 360 360 470 470 45 70 70 65 65 25 40 40 60 60 5 10 10 20 20 16x10x70 20x12x110 20x12x110 28x16x120 28x16x120 40 50 50 50 50 55 70 70 100 100 120x14 140x14 160x16 200x18 250x22 210 300 300 370 370 405 590 590 780 780 355 510 510 660 660 105 160 160 220 220 160 230 230 310 310 M30 M56 M56 M64 M64 45 110 110 130 130 M12x25 M14x30 M14x30 M16x35 M16x35 140 200 200 250 250 85 140 140 160 160 270 370 370 480 480 135 185 185 240 240 50 60 60 60 60 50 60 60 60 60
61
TP models
Extra heavy TP models
total length
stroke
protrusion
Series construction models
B form
S form
D form
TPR models XTPR Models* Size A A1 A2 A3 A4 A5 B C1 d Ø j6 DØ -0,2 D1 Ø -0,3 D2 Ø k6 D3 Ø D4 Ø D5 Ø D7 Ø E E1 E2 E3 FØ F1 F2 F3 (4 holes) F4 F5 (n° holes) H L L1 M [°] R (radius) S S1 S2 S4 S5 S6 S7 S8
62
183 118 70 56 7 7 4 3x3x15 15 9 18x3 30 12 26 40 54 94 80 29 35 9 7 30 24 14 3 50 25 10 12 45 10 85 74
* XTPR Models: stainless steel version
204 150 100 80 10 7,5 4x4x20 15 12 20x4 44 15 32 45 60 60 100 85 32,5 37,5 9 7 M5x10 M5x12 (4) 30 25 20 30 3 70 35 20 12 45 20 125 80
306 407 559 206 270 270 126 160 170 102 130 134 12 15 18 12 15 18 6x6x30 8x7x40 8x7x40 20 25 25 20 25 25 30x6 40x7 55x9 60 69 90 20 25 40 46 60 76 64 78 100 80 96 130 68 86 86 155 195 211 131 165 175 45 50 63 60 75 78 11 13 M20 30 7 9 13 M6x12 M8x15 M8x15 M6x12 (4) M8X16 (4) M8X16 (4) 50 70 70 40 55 50 25 30 45 45 30 30 3 3 3 90 120 150 45 60 75 25 35 40 14 16 20 48 75 100 25 35 40 160 215 255 93 130 170
7010 350 230 180 25 25 8x7x50 25 30 70x10 120 55 100 140 180 74 280 230 75 115 M30 45 18 M10x18 M8x15 (6) 90 60 70 30 3 176 88 40 30 105 40 281 200
8010 9010 350 390 230 250 180 200 25 25 25 25 8x7x50 12x8x60 25 40 30 40 80x10 100x12 120 150 60 70 110 150 150 190 190 230 74 100 280 320 230 270 75 85 115 125 M30 M30 45 45 18 20 M10X18 M10x18 M8x15 (6) M10x18 (4) 90 110 60 70 75 80 30 45 3 3 176 230 88 115 40 50 30 45 110 135 40 50 281 370 210 255
total length
stroke
protrusion
Series construction models
B model
S model
D model
Size A A1 A2 A3 A4 A5 B C1 d Ø j6 DØ -0,2 D1 Ø -0,3 D2 Ø k6 D3 Ø D4 Ø D5 Ø E E1 E2 E3 F1 F2 F3 (n° holes) F4 H L L1 R (radius) S S1 S2 S4 S5 S6 S7 S8
10012 490 320 230 45 25 5 16x10x70 40 55 100x12 210 70 150 190 230 405 355 105 160 M30 45 20 (4) M12x25 140 85 80 3 270 135 50 45 135 50 410 255
12014 14014 16016 20018 25022 490 780 780 920 920 320 500 500 600 600 230 360 360 470 470 45 70 70 65 65 25 40 40 60 60 5 10 10 20 20 16x10x70 20x12x110 20x12x110 28x16x120 28x16x120 40 50 50 50 50 55 70 70 100 100 120x14 140x14 160x16 200x18 250x22 210 300 300 370 370 90 120 130 160 200 180 210 210 310 310 235 270 270 400 400 280 320 320 480 480 405 590 590 780 780 355 510 510 660 660 105 160 160 220 220 160 230 230 310 310 M30 M56 M56 M64 M64 45 110 110 130 130 25 (4) 25 (6) 25 (6) 45 (6) 45 (6) M12x25 M14x30 M14x30 M16x35 M16x35 140 200 200 250 250 85 140 140 160 160 85 120 120 160 180 3 4 4 5 5 270 370 370 480 480 135 185 185 240 240 50 60 60 60 60 55 80 80 100 100 160 250 250 300 300 50 60 60 60 60 410 540 540 650 650 285 420 420 510 530
63
TPR models
Extra heavy TPR Models
TF
TLR
TMR
TM
TL
TPN
TLN TC End fittings X Models* Size C1 DØ D1Ø D2 Ø D3 Ø D4 Ø D5 Ø D6 Ø D7 k6 D12 F1(n° holes) L1 L2 L3 L4 L6 L7 L8 L9 L10 L11
183 204 306 407 559 7010 8010 9010 15 15 20 25 25 25 25 40 15 20 30 40 55 65 85 54 79 89 109 149 198 218 278 40 60 67 85 117 155 170 220 26 39 46 60 85 105 120 150 12x1 14x2 20x2,5 30x3,5 36x4 56x5,5 64x6 70x6 38 48 68 88 108 118 138 - 20x1,5 30x2 39x3 56x4 72x4 80x4 100x4 12 15 20 25 40 55 60 70 18x3 20x4 30x6 40x7 55x9 70x10 80x10 100x12 7 (4) 11 (4) 12 (4) 13 (4) 17 (4) 25 (4) 25 (4) 29 (4) 14 21 23 30 50 60 60 70 8 8 10 15 20 30 30 40 20 20 30 30 48 58 58 70 25 30 45 60 80 85 120 35 45 55 80 90 95 120 40 50 70 90 105 110 120 10 10 10 20 25 25 30 75 95 125 180 210 225 280 14 20 25 30 45 70 75 80 70 80 100 100 120 130 -
* X models: stainless steel version
64
10012 12014 40 40 85 100 278 298 220 240 150 170 70x6 90x6 138 138 100x4 120x4 70 90 100x12 120x14 29 (4) 32 (6) 70 80 40 50 70 90 120 150 120 150 120 130 30 30 280 350 80 85 -
14014 16016 50 50 120 140 378 378 300 300 210 210 110x6 125x6 168 216 150x4 150x4 120 130 140x14 160x16 52 (6) 52 (6) 100 100 60 60 110 125 150 150 160 180 170 180 35 35 380 380 120 120 -
20018 25022 50 50 160 200 504 574 420 470 300 350 160x6 200x6 160 200 200x18 250x22 58 (6) 58 (6) 150 150 80 80 140 150 160 180 160 180 -
TOR
TO
TFC
TOC
End fittings Size C1 CH D5 Ø D8 Ø D9 Ø D11 Ø E E1 F Ø H9 F2 Ø H9 F3 Ø F4 Ø G H H1 H2 H3 H4 H5 H6 H7 L L5 L6 S S1 S2 S3 α [º]
183 15 -
204 15 19 38 20 32 22 24 24 10 20 12 12 12 48 14 18 24 50 16 6,5 17 50 40 35 14 25 12 16 13
306 20 30 48 34 50 34 40 40 14 25 20 20 20 80 25 30 40 77 25 10 27 60 50 45 20 30 18 25 14
407 25 41 68 48 70 50 55 55 22 35 30 30 30 110 38 38 54 110 35 15 36 80 70 55 30 40 25 37 17
559 25 50 88 60 80 58 70 70 30 50 35 35 35 144 44 40 72 125 40 17 41 80 100 80 42 60 28 43 16
7010 25 108 40 60 100 120 90 55 75 -
8010 25 118 45 65 110 130 95 65 80 -
9010 10012 12014 14014 16016 20018 25022 40 40 40 50 50 50 50 138 138 168 168 216 80 80 100 140 140 160 160 200 280 280 120 120 150 170 180 100 100 120 155 155 -
* X models: stainless steel version
65
end fittings
X Models*
Series construction models
MBD model
MBS model
MD model
MS model
MTP-MTPR Models Size 204
306
X Models*
MBD model
407
MBS model
559
MD model 7010
8010
MS model
66
IEC Flange D9 H7 D10 H7 56 B5 9 80 63 B5 11 95 71 B5 14 110 71 B14 14 70 63 B5 11 95 71 B5 14 110 80 B5 19 130 80 B14 19 80 71 B5 14 110 80 B5 19 130 80 B14 19 80 90 B5 24 130 90 B14 24 95 100-112 B5 28 180 100-112 B14 28 110
D11 100 115 130 85 115 130 165 100 130 165 100 165 115 215 130
D12 120 140 160 105 140 160 200 120 160 200 120 200 140 250 160
F6 M6 M8 M8 7 M8 M8 M10 7 9 M10 7 M10 9 M12 9
L2 30 30 30 30 33 33 33 33 40 40 40 40 40 40 40
L3 10 10 10 10 13 13 13 13 15 15 15 15 15 15 15
L4 20 23 30 30 23 30 40 40 30 40 40 50 50 60 60
L5 80 80 80 80 96 96 96 96 120 120 120 120 120 120 120
R1 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
S9 3 4 5 5 4 5 6 6 5 6 6 8 8 8 8
T 10,4 12,8 16,3 16,3 12,8 16,3 21,8 21,8 16,3 21,8 21,8 27,3 27,3 31,3 31,3
71 B5 80 B5 80 B14 90 B5 90 B14 100-112 B5 100-112 B14 100-112 B5 100-112 B14 132 B5 132 B14 100-112 B5 100-112 B14 132 B5 132 B14
130 165 100 165 115 215 130 215 130 265 165 215 130 265 165
160 200 120 200 140 250 160 250 160 300 200 250 160 300 200
9 M10 7 M10 9 M12 9 M12 9 M12 11 M12 9 M12 11
40 40 40 40 40 40 40 55 55 55 55 55 55 55 55
15 15 15 15 15 15 15 17 17 17 17 17 17 17 17
30 40 40 50 50 60 60 60 60 80 80 60 60 80 80
125 125 125 125 125 125 125 170 170 170 170 170 170 170 170
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 6 6 8 8 8 8 8 8 10 10 8 8 10 10
16,3 21,8 21,8 27,3 27,3 31,3 31,3 31,3 31,3 41,3 41,3 31,3 31,3 41,3 41,3
14 19 19 24 24 28 28 28 28 38 38 28 28 38 38
110 130 80 130 95 180 110 180 110 230 130 180 110 230 130
* X models: stainless steel version For non quoted dimensions see to the relative tables on pages 60-63
PR rigid protection
+ stroke
S3
S3
+ stroke
The application of a rigid protection in the back side of the screw jack is the ideal solution in order to prevent dust and foreign matters from coming into with the coupling and causing damages to the threaded spindle.The PR protection can only be applied to TP models.The overall sizes are shown in the following table. Incompatibility: TPR models
PR rigid protection Size D1 Ø D6 Ø D8 Ø D13 Ø S3
183 38 34 32 30
204 52 48 46 50
306 71 65 63 60
407 80 74 72 75
559 104 97 95 80
7010 134 127 125 80
8010 134 127 125 80
9010 10012 12014 14014 16016 20018 25022 210 210 300 300 370 370 169 160 160 160 160 210 210 305 305 100 100 100 100 100 100 100
* XPR models: stainless steel version For non quoted dimensions see the relative tables on pages 60-63
67
motorized models and accessories
XPR Models*
PRO oil bath rigid protection
S3
S3
+ stroke
+ stroke
The application of an oil bath rigid protection, apart from representing a rigid protection, also allows to have the advantages of a semi-automatic lubrication. The lubricant must be added when mounting, with the jack completely closed, using the oil fill plug. Upon maneuvering the threaded spindle will be soaked with lubricant. In case the threaded spindle is left out of the protection for a long period, it could dry up so to make the PRO protection useless. For long strokes, in order to compensate the pump effect, it is necessary to mount an oil recirculation pipe (TRO) allowing lubricant to flow back inside the protection from the casing. It’s suggested the use of extremely high viscosity oils [2200 mm2/s] or high viscosity oils [220 mm2/s] with EP addictives in percentage of 15 – 20 %. Both solutions must present EP addictives for extreme pressures.We remind that the area indicated in the drawing could present lubricant drops: a vertical mounting will therefore avoid any leakage problems.The PRO protection can only be applied to TP models.The overall dimensions are shown in the following table. Incompatibility: TPR models – ALEPH series – CS, CSU, SU, SUA (pos.2) - PRF
TRO
PRO oil bath rigid protection XPRO Models* Size D1 Ø D6 Ø D8 Ø D13 Ø S3 L6 CH
183 38 34 32 30 25 17
204 52 48 46 50 32 17
306 71 65 63 60 41 17
407 80 74 72 75 45 17
559 104 97 95 80 57 22
* XPRO model: stainless steel version For non quoted dimensions see to the relative tables on pages 60-63
68
7010 134 127 125 80 72 22
8010 134 127 125 80 72 22
9010 10012 12014 14014 16016 20018 25022 210 210 300 300 370 370 169 160 160 160 160 210 210 305 305 100 100 100 100 100 100 100 89 89 89 114 114 162 162 22 22 22 22 22 22 22
CU Oil proof assembling
S3
S3
+ stroke
+ stroke
In some applications the service factor can be so high requesting a continuously spindle lubrication. In these cases, if the screw jack is mounted such a way not to allow oil losses from the indicated areas, it’s possible a special oil proof assembling, where internal gears are lubricated in an oil bath. It’s imperative that the oil fulfilling will be done with spindle in all-closed position. In case the threaded spindle is left out of the oil proof chamber for a long period, it could dry up, so make the CU assembling useless. In order to guarantee the right adhesion, it’s suggested the use of extremely high viscosity oils [2200 mm2/s] or high viscosity oils [220 mm2/s] with EP addictives in percentage of 15 – 20%. Both solutions must present EP addictives for extreme pressures. CU is suitable only for TP models. The overall dimensions are shown in the table below. Incompatibility: size 183 – TPR models – ALEPH series – CS, CSU, SU, SUA (pos.2) – PRF
Oil proof assembling CU XCU Models* Size D1 Ø D6 Ø D8 Ø D13 Ø S3
204 52 48 46 50
306 71 65 63 60
407 80 74 72 75
559 104 97 95 80
7010 134 127 125 80
8010 134 127 125 80
9010 10012 12014 14014 16016 20018 25022 210 210 300 300 370 370 169 160 160 160 160 210 210 305 305 100 100 100 100 100 100 100
69
accessories
* XCU model: stainless steel version For non quoted dimensions see to the relative tables on pages 60-63
BU Anti withdrawing bush
stroke
stroke
If there’s the necessity the spindle, in case of extra-stroke, not to withdraw from the jack body, it’s possible assembling a steel withdrawing bush. The BU has a trapezoidal thread, able to sustain the load in extra-stroke case.The BU can apply only in TP models. In case of PRF stroke control, the Bu has the function of end-of-stroke too. It’s important underline that one only extra-stroke attempt (and the consequent impact between BU and the carter) can hopeless damage the transmission. The overall dimensions are shown in the table below. Incompatibility: TPR models – PRA
Anti withdrawing bush BU XBU Models* Size L MØ
183 25 26
204 25 38
306 25 48
407 25 58
559 25 78
* XBU model: stainless steel version For non quoted dimensions see to the relative tables on pages 60-63
70
7010 25 88
8010 25 98
9010 10012 12014 14014 16016 20018 25022 40 40 40 60 60 80 80 137 137 145 175 190 248 298
PRF stroke control
stroke
In order to meet the requirement of an electric stroke control it is possible to apply to a rigid protection suitable s for end-of-stroke. In the standard version these s are of two types and they are placed at the ends of the stroke in one of the four positions shown below. They are carried out in such a way as to allow a small adjustment. In case more than one end-of-stroke are needed, it is possible to provide intermediate s or a continuous for the requested length. In order to enable the end-of-stroke to operate, a steel bushing is mounted on the threaded spindle. More bushings can be mounted upon request. The PRF can only be applied to TP models and in case of missing specifications it will be supplied with the s mounted according to position 1. Sensor are supplied only on demand. The overall dimensions are shown in the table below. Moreover it’s possible assembling magnetic sensors on the protection, avoiding to mill it. The end-of-stroke signal is given by a magnet attached on the bottom of the spindle. Incompatibility: TPR – PRO models - CU
PRF stroke control Size A B C D E FØ GØ HØ H1 Ø L MØ N P
183 45 30 30 18 30 32 34 38 25 24 25 5
204 55 35 45 18 38 46 48 52 25 38 40 5
306 60 50 45 18 47 63 65 71 25 48 40 5
407 70 50 45 18 51 72 74 80 25 58 40 5
* XPRF model: stainless steel version For non quoted dimensions see the schemes on pages 60-63
559 75 55 45 18 63 95 97 104 25 78 40 5
7010 75 55 45 18 78 125 127 134 25 88 40 5
8010 75 55 45 18 78 125 127 134 25 98 40 5
9010 10012 12014 14014 16016 20018 25022 85 100 100 100 100 120 120 55 55 55 55 55 55 55 45 45 45 45 45 45 45 18 18 18 18 18 18 18 95 95 95 120 120 165 165 160 160 160 210 210 305 305 160 169 210 210 300 300 370 370 25 25 25 25 25 40 40 130 130 136 160 180 275 275 40 40 40 40 40 40 40 5 5 5 5 5 5 5
71
accessoires
XPRF Models*
PE elastic protection The purpose of the elastic protections is to protect the threaded spindle by following its own movement during stroke. Standard type protections are elastic bellows, made of polyester covered nylon and can have, as serial, collars or flanges at their ends whose dimensions are shown in the table 1 below. Special implementations are available upon request, as well as a fixing by means of iron. Fixing flanges can be in plastic or metal. Special materials for the bellows are also available: Neoprene® and Hypalon® (water sea environment), Kevlar® (resistant to cuts and abrasion), glass fiber (for extreme temperatures, from -50 to 250°C) e aluminized carbon (it’s an auto-extinguish material for limit applications with molten metal spits). The PE standard material is guarantee for ambient temperature between -30 and 70°C. If it’s needed a waterproof elastic bellow, it’s possible to realize protections whose bellows are not sewed but heatsealed. This kind of protection is not able to solve condensate problem. Moreover, it’s possible to have metal protections on demand; such requests are be submitted to the Technical Office. Besides further implementations made of special materials fire-resistant and cold-resistant materials as well as of materials suited for aggressive oxidizing environments can be supplied. In case of long strokes internal anti-stretching rings are previewed in order to guarantee an uniform bellows opening.
Table 1
PE elastic protection Size AØ BØ D Ø spindle CØ E1Ø (n° of holes) F1 Ø G1 Ø L
72
183 70 30 18
204 70 44 20
306 85 60 30
407 105 69 40
559 120 90 55
7010 130 120 70
8010 140 120 80
9010 10012 12014 14014 16016 20018 25022 165 165 180 210 240 270 320 150 210 210 300 300 370 370 100 100 120 140 160 200 250 Dimension function of the end fitting Dimension to be specified by the costumer Dimension to be specified by the costumer Dimension to be specified by the costumer 1/8 of the stroke (completely closed)
stroke
stroke
The application of elastic protections on the screw jacks may implicate some dimensioning amendments due to the PE own sizes, as shown in table n.2. Further, in completely close conditions, the PE has an overall dimension equal to 1/8 of the stroke value. In case said value exceeds the C1 quote (which can be taken from the dimension tables on pages 60-63), the total length of the threaded spindle should be fitted to said dimensions. In case of horizontal mounting (of which previous notice should be given) it is necessary to the protection weight itself in order to avoid that it leans on the threaded spindle; for this purpose special rings are foreseen. The PE can be applied to TP and TPR models and in case of missing specifications they can be supplied with fabric collars and the dimensions shown in table 1, supposing that a vertical mounting is carried out. Incompatibility: none
Table 2
PE elastic protection Size S6 AØ L
183 10 70
204 20 70
306 25 80
407 35 105
559 40 120
7010 40 130
8010 40 140
9010 10012 12014 14014 16016 20018 25022 50 50 50 60 60 60 60 170 170 190 230 230 270 320 1/8 of the stroke (completely closed)
73
accessories
For non quoted dimensions see the schemes on pages 60-63
PRA double guide anti-rotation
A + stroke
A + stroke
As all screw jacks must have an anti-rotation, in case such constraint cannot be realized externally, it is possible, for TP models, to have an inner anti-rotation system inside the screw jack. Two guides are mounted on the rigid protection where a bronze bushing, which is attached to the threaded spindle, can slide. In case of very long strokes it should be checked that the torsional sliding is not such as to force the fixing screws in the guides. As the inner anti-rotation constraints the threaded spindle and its end fitting, in case of presence of holes, like in TF and TOR end fittings, their position should be indicated, as shown in the drawings below. Unless otherwise stated all screw jacks will be delivered in position 1 or 3. The overall dimensions are shown in the table below. Incompatibility: TPR models – ALEPH series – AR
1
2
3
4
Rigid protection with PRA double guide anti-rotation XPRA Models* Size A B C
183 50 34 38
204 80 48 52
306 80 65 71
407 100 74 80
* XPRA Model: stainless steel version For non quoted dimensions see the schemes on pages 60-63
74
559 105 97 104
7010 120 127 134
8010 120 127 134
9010 10012 12014 14014 16016 20018 25022 140 170 170 170 170 200 200 160 160 160 210 210 305 305 169 210 210 300 300 370 370
AR grooved spindle anti-rotation Another inner anti-rotation system which is only available for TP models is the grooved spindle. It provides a continuous milling along the threaded spindle length where an hardened key, having seat in the cover of the screw jack, can slide; it ensures an anti-rotation. As this accessory foresees a cut interrupting the threads continuity, the spindle mechanical strength itself is reduced: a reduction of the load capacity has to be taken into s reported in the table below. In addition, also due to said grooving on the threaded spindle, in order to limit wear phenomena, the AR should be used when the fa factor is lower than or equal to 1. As the inner anti-rotation constraints the threaded spindle and its end fitting, in case of presence of holes, like in the TF and TOR end fittings their position should be indicated, as shown in the drawings below. Unless otherwise stated all screw jacks will be delivered in position 1 or 3. Incompatibility: TPR models – ALEPH series – size 183 – X series – PRA
Load reduction % Static Dynamic
204 13 40
1
306 8 25
407 10 30
2
559 7 20
7010 9 30
8010 8 25
9010 10012 12014 14014 16016 20018 25022 6 6 5 5 5 4 4 20 20 15 15 15 10 10
3
4
75
accessories
For non quoted dimensions see the schemes on pages 60-63
CS Safety lead nut for monitored wear control In many applications it is necessary to ensure that the screw jack can safely the load even under wear conditions of the main nut, be it the worm wheel or the lead nut. The safety lead nut has been designed for that purpose: it couples to the nut through an insert and follows its movement. When the main nut starts wearing out, the axial backlash in the threaded spindle coupling is increased, and, under a load, the safety lead nut gets closer to the nut, starting to part of the force acting on it. This phenomenon means a reduction of the L or L1 quote (according to the model). When this reduction reaches the X value indicated in the table below, the nut and the safety lead nut must be replaced, otherwise the wear phenomena could cause a collapse of the load. Just after mounting, it is therefore necessary to periodically measure the L or L1 quote, in order to check the wear conditions of the components. A safety lead nut only works in one way: either it ensures the traction load or the compression load . Unless otherwise stated, all screw jacks will be delivered in the drawing configurations 1 and 3 and for a compression load. We remind that the area indicated in the drawing could present lubricant drops: a vertical mounting will therefore avoid any leakage problems. The overall dimensions are shown in the following table. Incompatibility: ALEPH series – size 183 – RG – CSU- SU- SUA
1
2
3
4
CS Safety lead nut for monitored wear control for TP models XCS Models* Size Wear border value X DØ L~
204 1 40 17
306 1,5 52 20
407 1,75 65 32
559 2,25 82 42
7010 2,5 100 58
8010 2,5 110 63
9010 10012 12014 14014 16016 20018 25022 3 3 3,5 3,5 4 5 6 150 150 170 220 220 300 300 66 76 115 200 200 170 170
* XCS model: stainless steel version For non quoted dimensions see the schemes on pages 60-63
CS Safety lead nut for monitored wear control for TPR models Size Wear border value X D3 Ø D5 Ø L1 ~ S9 S10
204 1 32 60 2 35 82
306 407 1,5 1,75 46 60 80 96 3 3,5 38 64 89 142,5
For non quoted dimensions see the schemes on pages 60-63
76
559 2,25 76 130 4,5 89 193,5
7010 2,5 100 180 5 90 200
8010 2,5 110 190 5 95 210
9010 10012 12014 14014 16016 20018 25022 3 3 3,5 3,5 4 5 6 150 150 180 210 210 310 310 230 230 280 320 320 480 480 6 6 7 7 8 9 11 115 115 135 220 220 250 250 256 256 302 477 478 559 561
CSU Safety lead nut for automatic wear control When a CS safety lead nut is combined with an automatic system for controlling the X quote using a proximity switch, a CSU system is obtained. Al the remarks made in the CS paragraph can also be applied to this system. The overall dimensions are shown in the following table. Incompatibility: ALEPH series – size 183 – RG – CSU- SU- SUA
1
2
3
4
CSU Safety lead nut for automatic wear control for TP models XCSU Models* Size Wear border value X D1 Ø D6 Ø D7 Ø L3 L4
204 1 44 67 67 54 10
306 407 1,5 1,75 60 69 88 100 92 125,5 60 74 10 10
559 2,25 90 120 132 84 10
7010 2,5 120 150 192 115 10
8010 2,5 120 150 192 115 10
9010 10012 12014 14014 16016 20018 25022 3 3 3,5 3,5 4 5 6 150 210 210 180 200 220 270 270 380 380 215 265 265 375 375 115 145 165 250 250 295 295 10 10 10 -
* XCSU model: stainless steel version For non quoted dimensions see the schemes on pages 60-63
Size Wear border value X D3 Ø D5 Ø L1 ~ S9 S10
204 1 32 60 2 35 82
306 407 1,5 1,75 46 60 80 96 3 3,5 38 64 89 142,5
559 2,25 76 130 4,5 89 193,5
7010 2,5 100 180 5 90 200
8010 2,5 110 190 5 95 210
9010 10012 12014 14014 16016 20018 25022 3 3 3,5 3,5 4 5 6 150 150 180 210 210 310 310 230 230 280 320 320 480 480 6 6 7 7 8 9 11 115 115 135 220 220 250 250 256 256 302 477 478 559 561
For non quoted dimensions see the schemes on pages 60-63
77
accessories
CS Safety lead nut for automatic wear control for TPR models
SU Lead nut for monitored wear control In many applications it is necessary to steady check the wear conditions of the main nut, be it the worm wheel or the lead nut. The lead nut for monitored wear control has been designed for that purpose: it couples to the nut through an insert and follows its movement. When the main nut starts wearing out, the axial backlash in the threaded spindle coupling is increased, and, under load, the safety lead nut get closer to the nut. This phenomenon means a reduction of the L or L1 quote (according to the model). When this reduction reaches the X value indicated in the table below, the nut and the lead nut must be replaced, otherwise the wear phenomena could cause a collapse of the load. The lead nut for monitored wear control is not a safety lead nut and it is therefore not designed for ing the load. After mounting, it is therefore necessary to periodically measure the L or L1 quote, in order to check the wear conditions of the components. A lead nut for monitored wear control only works in one way: either it monitors the wear conditions under a traction load or it controls the wear condition under a compression load. Unless otherwise stated all screw jacks will be delivered in the drawing configurations 1 and 3 and for a compression load. We remind that the area indicated in the drawing could present lubricant drops: a vertical mounting will therefore avoid any leakage problems. The overall dimensions are shown in the following table. Incompatibility: ALEPH series – size 183 – RG – CS - CSU- SUA
1
2
3
4
SU lead nut for monitored wear control for TP models XSU Models* Size Wear border value X DØ L~
204 1 40 8,5
306 1,5 52 11
407 1,75 65 11,5
559 2,25 82 12
7010 2,5 110 12
8010 2,5 110 12
9010 10012 12014 14014 16016 20018 25022 3 3 3,5 3,5 4 5 6 140 150 170 220 220 300 300 13 13 14 14 14 20 20
* XSU model: stainless steel version For non quoted dimensions see the schemes on pages 60-63
SU lead nut for monitored wear control for TPR models Size Wear border value X D3 Ø D5 Ø L1 ~ S6 S11
204 1 32 60 2 16 63
306 407 1,5 1,75 46 60 80 96 3 3,5 25 30 76 108,5
For non quoted dimensions see the schemes on pages 60-63
78
559 2,25 76 130 4,5 35 139,5
7010 2,5 100 180 5 40 150
8010 2,5 110 190 5 40 155
9010 10012 12014 14014 16016 20018 25022 3 3 3,5 3,5 4 5 6 150 150 180 210 210 310 310 230 230 280 320 320 480 480 6 6 7 7 8 9 11 50 50 60 60 60 70 70 191 191 227 317 318 379 381
SUA Safety lead nut for automatic wear control When an SU lead nut for automatic wear control is combined with an automatic system for controlling the X quote using a proximity switch, an SUA system is obtained. All the remarks made in the SU paragraph can also be applied to this system. The overall dimensions are shown in the following table. Incompatibility: ALEPH series – size 183 – RG – CS – CSU – SU
2
1
3
4
SUA lead nut for automatic wear control for TP models XSUA Models* Size Wear border value X D1 Ø L2 ~
204 1 47 29
306 1,5 60 23
407 1,75 72 25,5
559 2,25 90 26
7010 2,5 120 28
8010 2,5 120 28
9010 10012 12014 14014 16016 20018 25022 3 3 3,5 3,5 4 5 6 150 160 180 230 230 300 300 29 29 30 30 30 30 30
* XSUA model: stainless steel version For non quoted dimensions see the schemes on pages 60-63
Size Wear border value X D3 Ø D5 Ø L1 ~ S6 S11
204 1 32 60 2 16 63
306 407 1,5 1,75 46 60 80 96 3 3,5 25 30 76 108,5
559 2,25 76 130 4,5 35 139,5
7010 2,5 100 180 5 40 150
8010 2,5 110 190 5 40 155
9010 10012 12014 14014 16016 20018 25022 3 3 3,5 3,5 4 5 6 150 150 180 210 210 310 310 230 230 280 320 320 480 480 6 6 7 7 8 9 11 50 50 60 60 60 70 70 191 191 227 317 318 379 381
For non quoted dimensions see the schemes on pages 60-63
79
accessories
SUA lead nut for automatic wear control for TPR models
RG Anti axial backlash lead nut As already explained in the previous paragraphs, the coupling between the threaded spindle and its nut, be it the worm wheel or the lead nut, represents a natural axial backlash. If, for mounting requirements and under a load which changes its direction, from traction to compression and vice versa, it is necessary to reduce the axial backlash, an anti axial backlash lead nut can be applied. The RG lead nut is linked to the nut through an insert and it is attached to it by means of dowels in TPR model, and by means of the contrast cover in the TP models. Closing the dowels or rotating the cover are the actions requested to reduce the axial backlash. Be careful with an excessive backlash reduction: you could assist to huge wear phenomena and the nut could grip on the spindle due to the difference in the two pitch errors. The application of the anti axial backlash system reduces the screw jack running efficiency by 40%. We remind that the area indicated in the drawing could present lubricant drops: a vertical mounting will therefore avoid any leakage problems. The overall dimensions are shown in the following table. Incompatibility: ALEPH series – size 183 – CS – CSU – SU – SUA
RG anti axial backlash lead nut for TP models XRG Models* Size D1 Ø D9 Ø S9 S10 S11
204 44 62 13 20 33
306 60 118 14 15 29
407 69 150 21 15 36
559 90 150 19 19 38
7010 120 230 47 23 70
8010 120 230 47 23 70
9010 150 215 45 25 70
* XRG model: stainless steel version For non quoted dimensions see the schemes on pages 60-63
RG anti axial backlash lead nut for TPR models Size D3 Ø D5 Ø X~ S12 S13
204 32 60 2 35 82
306 407 46 60 80 96 3 3,5 38 84 89 142,5
For non quoted dimensions see the schemes on pages 60-63
80
559 76 130 4,5 89 193,5
7010 100 180 5 90 200
8010 110 190 5 95 210
9010 10012 12014 14014 16016 20018 25022 150 150 180 210 210 310 310 230 230 280 320 320 480 480 6 6 7 7 8 9 11 115 115 135 220 220 250 250 256 256 302 477 478 559 561
CR worm wheel rotation control In some cases it can be necessary to check the operation conditions of the screw jack monitoring the worm wheel rotation, both in TP models and in TPR models. A milling is carried out on the worm wheel and a suitable proximity switch supplies an electric impulse for each turn. No impulse means that the transmission is stopped. Special executions with more impulses per round are always possible. Incompatibility: ALEPH series – size 183
CT- CTC Temperature control
For non quoted dimensions see the schemes on pages 60-63
81
accessories
Due to the fact that they are irreversible transmissions, a big amount of input power is lost by mechanical screw jacks and it is therefore transformed into heat. It is possible to control temperature both on the casing (CT) and on the lead nut (CTC) by means of a thermal probe emitting an electric impulse when the preset temperature of 80 °C is reached. Moreover it’s possible to apply a sensor able to catch the temperature exact value and to send to a plc an electric signal proportional to the above mentioned value. Incompatibility: ALEPH series
SP Additional mounting plates If for mounting requirements it is necessary to fix the screw jacks on holes which do not coincide with the casing holes, steel mounting plates can be supplied. The overall dimensions for the standard version are shown in the table below, but different fixing holes can be realized upon request. Incompatibility: ALEPH series – sizes 183, 10012, 12014, 14014, 16016, 20018, 25022 - P - PO
SP Additional mounting plates Size A B C DØ F G H I L M N O S For non quoted dimensions see the schemes on pages 60-63
82
204 100 140 10 9 47,5 30 55 42,5 80 50 10 120 15
306 126 205 12 11 72,5 50 65 57,5 102 76 12,5 180 20
407 160 255 15 13 90 70 85 65 130 90 15 225 25
559 170 291 18 20 98 70 105 83 134 100 20 251 30
7010 230 400 25 30 145 90 133 105 180 130 30 340 45
8010 230 400 25 30 145 90 133 105 180 130 30 340 45
9010 250 440 25 30 155 110 160 115 200 150 30 380 45
FP -through holes for bolts In case for mounting requirements, -through holes are needed for the sizes from 559 to 25022 instead of blind holes, they can be provided according to the overall dimensions shown in the table below. Incompatibility: ALEPH series – sizes 183, 204, 306, 407
FP -through holes for bolts Size FØ
559 20
7010 30
8010 30
9010 10012 12014 14014 16016 20018 25022 30 30 30 56 56 66 66
83
accessories
For non quoted dimensions see the schemes on pages 60-63
PO Rigid rocking protection
L + stroke
When it is necessary to apply a rocking mounting, UNIMEC is able to offer, for TP models, a special rigid reinforced protection which has an eyelet at its end. This protection very often s the load, and it is therefore advisable that this protection be not too long in order to avoid an anomalous bending of the PO. Further, it should be reminded that mounting a PO in combination with an end fitting having an eyelet does not automatically give to the screw jack the status of a connecting rod (absence of lateral loads). In case of compressive loads, the buckling verification must be calculated on a length equal to the hinges distance. Motors can directly be assembled to the screw jack. The overall dimensions are shown in the following table. Incompatibility: TPR models - ALEPH series sizes 183, 10012, 12014, 14014, 16016, 20018, 25022 - P - PR - PRO - SP - PRA
PO rigid rocking protection XPO Models* Size D1 Ø D2 Ø D3 Ø F Ø H9 L L1 L2 L3 L4 L5 S * XPO model: stainless steel version For non quoted dimensions see the schemes on pages 60-63
84
204 38 45 88 20 90 55 15 40 20 15 25
306 48 60 110 25 115 70 20 50 25 20 30
407 68 85 150 35 145 95 25 70 35 20 40
559 88 105 150 50 180 140 40 100 50 20 60
7010 108 133 200 60 210 165 45 120 60 25 75
8010 118 133 200 65 215 175 45 130 65 25 80
9010 138 169 230 80 280 220 60 160 80 30 100
P Lateral pins The purpose of this solution is very similar to the PO one: two lateral pins are fixed on the screw jack body in order to allow a rocking mounting. For some aspects this solution can be preferred as to the rocking protection because, in the slender rod scheme, the distance between the two hinges is exactly half. Further we remind that mounting lateral pins combined with an end fitting having an eyelet does not automatically give to the screw jack the status of a connecting rod (absence of lateral loads). In case of compressive loads, the buckling verification must be calculated on a length equal to the hinges distance. Motors can directly be assembled to the screw jack. The overall dimensions are shown in the following table. Incompatibility: ALEPH series - sizes 183, 10012, 12014, 14014, 16016, 20018, 25022 - PO - SP
P lateral pins 204 25 55 125 30 50 185
306 30 60 180 35 72,5 250
407 40 70 225 45 90 315
559 50 80 261 55 103 371
7010 55 95 310 60 130 430
8010 60 95 310 60 130 430
9010 65 100 350 65 140 480
* XP model: stainless steel version For non quoted dimensions see the schemes on pages 60-63
85
accessories
XP Models* Size D15 Ø k6 D16 Ø L7 L8 L9 L10
DA double action model The double action model satisfies the need to move two nuts with a unique kinematic. The spindle protrudes from both screw jack faces and may have two configurations: DXSX: the spindle is right threaded by one face and left threaded by the other one. The kinematic presents opposite shifts, as shown in fig. 1. DXDX: the spindle is completely right threaded. The kinematic presents the same shift direction, as shown in fig. 2. Like kinematics, also loads can have the same or the opposite directions. This is the origin of the problems shown below. Moreover it’s important that the verification at the equivalent power must be always done considering both loads.
a)
b)
c) The verification at buckling must be done on the spindle total length. The maximum issible load is the nominal of that size. b) The maximum issible load is the nominal of that size c) The verification at buckling must be done on half spindle total length considering the structure constraints. The maximum issible load is the half the nominal of that size. The overall dimension C1 has to be considered on both faces and numerically correspond to the values reported in pag. 62-63 schemes. Incompatibility: TP models – size 183, 9010, 10012, 12014, 14014, 16016, 20018, 25022 a)
1
2
DA double action model Size C1
86
* XDA model: stainless steel version For non quoted dimensions see schemes on pages 60-63
XDA Models* 204 15
306 20
407 25
559 25
7010 25
8010 25
FD fast disassembling TPR model In some applications (very long spindles, fast maintenance, rational expeditions) can be a good idea to disassemble a TPR spindle from the jack body without long and expansive operations like le disassembling of the elastic pins between spindle and wheel. In this case it’s possible to offer a solution in which spindle is made by two crops ending with two TF terminals (look at page 64) connected by bolts. Disassembling them spindle will become two components easy to re-assemble. Obviously the nut stroke cannot extend over the double TF, and this cause a major overall axial dimension, as shown in the drawing below. A spigot on the terminals guarantees axial alignment between the crops after reassembling. The overall dimensions are shown in the table below. Incompatibility: model TP – size 183, 9010, 10012, 12014, 14014, 16016, 20018, 25022
FD fast disassembling TPR model XFD Models* Size C C1
204 115 15
306 130 20
407 160 25
559 195 25
7010 205 25
8010 205 25
* XFD model: stainless steel version For non quoted dimensions see schemes on pages 60-63
GV Viton® seals Due to the friction phenomena, rotating components and the seals on which they slide can locally reach high temperatures. If the previewed ones over 80 °C, commercial seals constitutive materials can lose their properties and damage themselves. In these cases, on demand, it’s possible to use seals realized in Viton®, a special material able to be stable, up to continuous temperatures of 200 °C, to brittling and hardening phenomena.
NIPLOY treatment For applications in oxidizing environments, it is possible to protect some screw jack components, which do not undergo any sliding, by means of a chemical nickel treatment, the so-called Niploy. It creates a non permanent surface coating on casings, covers, bushings, end fittings, and on the protruding shafts of the worm screw. The threaded spindle cannot undergo this treatment.
For applications where a permanent resistance to oxidizing is necessary, it is possible to supply the components in stainless steel. Sizes 204, 306 and 407 foresee a model in AISI 316, as a standard production, for all components: threaded spindles, covers, bushings, casings, end fittings and motor flanges; the only exception is the worm screw, which, on demand, undergoes a Niploy treatment in case of protrusions. The X series can be applied in the sea environment without any oxidizing problems. It is possible to supply all the remaining sizes in AISI 304 or 316 steel as special components. For further informations see pages 226-229.
87
accessories
The stainless steel series
stroke
totla lenght
stroke
protrusion
AM Over-size spindle models
AM Over-size spindle models
88
Size A A1 A2 A3 A4 A5 B C1 d Ø j6 -0,2 D Ø -0,3 D1 Ø D2 Ø D3 Ø D4 Ø D5 Ø E E1 E2 E3 FØ F3 Ø (4 holes) F4 Ø H L L1 R S S1 S2 S4 S5 S6 S7 S8
183 118 70 56 7 7 4 3x3x15 15 9 20x4 30 15 32 45 60 94 80 29 35 9 7 30 24 20 3 50 25 10 12 45 10 85 80
204 150 100 80 10 7,5 4x4x20 15 12 30x6 44 20 46 64 80 100 85 32,5 37,5 9 7 M5x10 30 25 25 3 70 35 20 14 48 20 125 88
306 206 126 102 12 12 6x6x30 20 20 40x7 60 25 60 78 96 155 131 45 60 11 9 M6x12 50 40 30 3 90 45 25 16 75 25 160 125
407 559 270 270 160 170 130 134 15 18 15 18 8x7x40 8x7x40 25 25 25 25 55x9 70x10 69 90 40 55 76 100 100 140 130 180 195 211 165 175 50 63 75 78 13 M20x30 13 18 M8x16 M8x16 70 70 55 50 45 70 3 3 120 150 60 60 35 40 20 30 100 105 35 40 215 255 170 200
AM Over-size spindle This construction solution, which is very useful in case a compression static load is very different from its corresponding dynamic load, consists of mounting on the screw jack a threaded spindle having the higher size. This model can be applied to TP models for sizes 183, 204, 306, and to TPR models for sizes between 183 and 559; it cannot be applied to the ALEPH series. If the model has an over-size spindle the Euler test should be performed on the higher size. It’s important the load and power capacity is related to jack body size, and not to the spindle diameter. The overall dimensions are indicated in the previous page table.
NORMS ATEX directive (94/9/CE) The 94/9/CE directive is better known as the “ATEX directive”. All UNIMEC’s products may be classified as “components” according to the definition quoted in art.1 par.3 c), and therefore they do not require an ATEX mark. A conformity declaration in accordance to what stated in art.8 par.3 can be supplied upon end ’s request, subject to the filling up of a questionnaire with the indication of the working parameters.
Machinery directive (98/37/CE) The 98/37/CE directive is better known as the “Machinery directive”. UNIMEC’s components are included in the products categories which do not need to affix the CE mark, as they are “intended to be incorporated or assembled with other machinery” (art.4 par.2). Upon end ’s request a manufacturer declaration can be supplied in accordance to what is foreseen at Annex II, point B. The new machine directory (06/42/CE) will be acknowledged by 29/12/2009. UNIMEC guarantees that every new duty in mechanical transmission will be followed by such date.
ROHS directive (02/95/CE) The 02/95/CE directive is better known as the “ROHS directive”. All UNIMEC’s suppliers of electromechanical equipments have issued a conformity certification to the above norms for their products. A copy of said certificates can be supplied upon final ’s request.
The 06/121/CE is better known as “REACH” directive and applies as the rule CE 1907/2006. UNIMEC products present only inside lubricants as “substances”, so being disciplined by art. 7 of above mentioned rule. By art. 7 par. 1 b) UNIMEC declares that its products are not subjected to any declaration or registration because the substances in them are not “to be lost in normal and reasonable previewed usage conditions”; in facts lubricant losses are typical of malfunctions or heavy anomalies. By art. 33 of the rule CE 1907/2006, UNIMEC declares that inside its products there aren’t substances identified by art. 57 in percentage to be dangerous.
UNI EN ISO 9001:2000 norm UNIMEC has always considered the company’s quality system management as a very important subject. That is why, since the year 1996, UNIMEC is able to show its UNI EN ISO 9001 certification, at the beginning in accordance to the 1994 norms and now meeting the requirements of the version published in the year 2000. 13 years of company’s quality, certified by UKAS, the world’s most accredited certification body, take shape into an organization which is efficient at each stage of the working process. In date 31/10/2008 the new version of this norm was published. UNIMEC will evaluate every news reported in this revision.
Painting Our products are all painted in color RAL 5015 blue. An oven-dry system enables the products to have a perfect adhesivity. Different colors as well as epoxidic paints are available. 89
accessories and norms
REACH directive (06/121/CE)
MOUNTING SCHEMES Scheme 1
Scheme 2
Scheme 3
Scheme 4
90
Application samples are online at www.unimec.eu - section Applications
Scheme 5
Scheme 7
Application samples are online at www.unimec.eu - section Applications
91
mounting schemes
Scheme 6