Materi Dan Gambar Model Atom
A. Perkembangan teori atom Teori atom selalu mengalami perkembangan dari waktu ke waktu sesuai dengan penemuan baru. teori atom telah berkembang sejak abad sebelum masehi dan menjadi pertanyaan besar di kalangan para ahli filsafat yunani. Demokritus berpendapat bahwa suatu materi bersifat diskontinu, jika dibelah terus menerus akan diperoleh materi yang lebih kecil lagi. bagian terkecil yang tidak bisa dibagi lagi disebut dengan atom. Oke, mari kita lihat teori- teori tentang atom. 1.
Teori Atom Dalton Pada tahun 1803, John Dalton mengemukakan mengemukakan pendapatnaya tentang
atom. Teori atom Dalton didasarkan pada dua hukum, yaitu hukum kekekalan massa (hukum Lavoisier) dan hukum susunan tetap (hukum prouts). Lavosier mennyatakan bahwa “Massa total zat-zat sebelum reaksi akan selalu sama dengan massa total zat-zat hasil reaksi”. Sedangkan Prouts menyatakan bahwa “ Perbandingan massa unsur-unsur dalam suatu senyawa selalu tetap”. Dari kedua hukum tersebut Dalton mengemukakan pendapatnya tentang atom sebagai berikut: 1. Atom merupakan bagian terkecil dari materi yang sudah tidak dapat dibagi lagi 2. Atom digambarkan sebagai bola pejal yang sangat kecil, suatu unsur memiliki atomatom yang identik dan berbeda untuk unsur yang berbeda 3. Atom-atom bergabung membentuk senyawa dengan perbandingan bilangan bulat dan sederhana. Misalnya air terdiri atom-atom hidrogen dan atom-atom oksigen 4. Reaksi kimia merupakan pemisahan atau penggabungan atau penyusunan kembali dari atom-atom, sehingga atom tidak dapat diciptakan atau dimusnahkan.
Gbr 1. Model Atom Dalton
2.
Teori Atom J. J. Thomson Berdasarkan penemuan tabung katode yang lebih baik oleh William Crookers, maka J.J.
Thomson meneliti lebih lanjut tentang sinar katode dan dapat dipastikan bahwa sinar katode merupakan partikel, sebab dapat memutar baling-baling yang diletakkan diantara katode dan anode. Dari hasil percobaan ini, Thomson menyatakan bahwa sinar katode merupakan partikel penyusun atom (partikel subatom) yang bermuatan negatif dan selanjutnya disebut elektron. Atom merupakan partikel yang bersifat netral, oleh karena elektron bermuatan negatif, maka harus ada partikel lain yang bermuatan positifuntuk menetrallkan muatan negatif elektron tersebut. Dari penemuannya tersebut,Thomson memperbaiki kelemahan dari teori atom dalton dan mengemukakan teori atomnya yang dikenal sebagai Teori Atom Thomson yang menyatakan bahwa:
1
“Atom merupakan bola pejal yang bermuatan positif dan didalamya tersebar muatan negatif elektron” Model atomini dapat digambarkan sebagai jambu biji yang sudah dikelupas kulitnya. biji jambu menggambarkan elektron yang tersebar merata dalam bola daging jambu yang pejal, yang pada model atom Thomson dianalogikan sebagai bola positif yang pejal.
Gbr 2. Model Atom Thompson
3.
Teori Atom Rutherford Rutherford bersama dua orang muridnya (Hans Geigerdan Erners Masreden) melakukan
percobaan yang dikenal dengan hamburan sinar alfa (λ) terhadap lempeng tipis emas. Sebelumya telah ditemukan adanya partikel alfa, yaitu partikel yang bermuatan positif dan bergerak lurus, berdaya tembus besar sehingga dapat menembus lembaran tipis kertas. Percobaan tersebut sebenarnya bertujuan untuk menguji pendapat Thomson, yakni apakah atom itu betul-betul merupakan bola pejal yang positif yang bila dikenai partikel alfa akan dipantulkan atau dibelokkan. Dari pengamatan mereka, didapatkan fakta bahwa apabila partikel alfa ditembakkan pada lempeng emas yang sangat tipis, maka sebagian besar partikel alfa diteruskan (ada penyimpangan sudut kurang dari 1°), tetapi dari pengamatan Marsden diperoleh fakta bahwa satu diantara 20.000 partikel alfa akan membelok sudut 90° bahkan lebih. Berdasarkan gejala-gejala yang terjadi, diperoleh beberapa kesipulan beberapa berikut: 1. Atom bukan merupakan bola pejal, karena hampir semua partikel alfa diteruskan 2. Jika lempeng emas tersebut dianggap sebagai satu lapisanatom-atom emas, maka didalam atom emas terdapat partikel yang sangat kecil yang bermuatan positif. 3. Partikel tersebut merupakan partikelyang menyusun suatu inti atom, berdasarkan fakta bahwa 1 dari 20.000 partikel alfa akan dibelokkan. Bila perbandingan 1:20.000 merupakan perbandingan diameter, maka didapatkan ukuran inti atom kira-kira 10.000 lebih kecil daripada ukuran atom keseluruhan. Berdasarkan fakta-fakta yang didapatkan dari percobaan tersebut, Rutherford mengusulkan model atom yang dikenal dengan model atom rutherford yang menyatakan bahwa atom terdiri dari inti atom yang sangat kecil dan bermuatan positif, dikelilingi oleh elektron yang bermuatan negatif. Rutherford menduga bahwa didalam inti atom terdapat partikel netral yang berfungsi mengikat partikel-partikel positif agar tidak saling tolak menolak
1 Gbr 3. Model Atom Ruterford
4.
Teori Atom Bohr Pada tahun 1913, pakar fisika Denmark bernama Neils Bohr memperbaiki kegagalan
atom Rutherford melalui percobaannya tentang spektrum atom hidrogen. Percobaannya ini berhasil memberikan gambaran keadaan elektron dalam menempati daerah disekitar inti atom. Penjelasan Bohr tentang atom hidrogen melibatkan gabungan antara teori klasik dari Rutherford dan teori kuantum dari Planck, diungkapkan dengan empat postulat, sebagai berikut: 1. Hanya ada seperangkat orbit tertentu yang diperbolehkan bagi satu elektron dalam atom hidrogen. Orbit ini dikenal sebagai keadaan gerak stasioner (menetap) elektron dan merupakan lintasan melingkar disekeliling inti. 2. Selama elektron berada dalam lintasan stasioner, energi elektron tetap sehingga tidak ada energi dalam bentuk radiasi yang dipancarkan maupun diserap. 3. Elektron hanya dapat berpindah dari satu lintasan stasioner ke lintasan stasioner lain. Pada peralihan ini, sejumlah energi tertentu terlibat, besarnya sesuai dengan persamaan planck, E2 – E1 = hf 1. Lintasan stasioner yang dibolehkan memilki besaran dengan sifat-sifat tertentu, terutama sifat yang disebut momentum sudut. Besarnya momentum sudut merupakan kelipatan dari h/2p atau nh/2p, dengan n adalah bilangan bulat dan h tetapan planck. Menurut model atom bohr, elektron-elektron mengelilingi inti pada lintasan-lintasan tertentu yang disebut kulit elektron atau tingkat energi. Tingkat energi paling rendah adalah kulit elektron yang terletak paling dalam, semakin keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya.
Gbr 4. Model Atom Bohr
5.
Teori Atom Modern Model atom mekanika kuantum dikembangkan oleh Erwin Schrodinger (1926).Sebelum
Erwin Schrodinger, seorang ahli dari Jerman Werner Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”. Daerah ruang di sekitar inti dengan kebolehjadian untuk mendapatkan elektron disebut orbital. 1 Bentuk dan tingkat energi orbital dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger
memecahkan suatu persamaan untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan ditemukannya elektron dalam tiga dimensi. Model atom dengan orbital lintasan elektron ini disebut model atom modern atau model atom mekanika kuantum yang berlaku sampai saat ini, seperti terlihat pada gambar berikut ini. Model atom dengan orbital lintasan elektron ini disebut model atom modern atau model atom mekanika kuantum yang berlaku sampai saat ini, seperti terlihat pada gambar berikut ini.
Gbr 5. Model Atom Tunggal
Awan elektron disekitar inti menunjukan tempat kebolehjadian elektron. Orbital menggambarkan tingkat energi elektron. Orbital-orbital dengan tingkat energi yang sama atau hampir sama akan membentuk sub kulit. Beberapa sub kulit bergabung membentuk kulit.Dengan demikian kulit terdiri dari beberapa sub kulit dan subkulit terdiri dari beberapa orbital. Walaupun posisi kulitnya sama tetapi posisi orbitalnya belum tentu sama.
B. BENTUK MOLEKUL Dalam bentuk molekul dikenal adanya teori ikatan valensi. Teori ini menyatakan bahwa ikatan antar atom terjadi dengan cara saling bertindihan dari orbital-orbital atom. Elektron dalam orbital yang tumpang tindih harus mempunyai bilangan kuantum spin yang berlawanan. Pertindihan antara dua sub kulit s tidak kuat, oleh karena distribusi muatan yang berbentuk bola, oleh sebab itu pada umumnya ikatan s – s relatif lemah. Sub kulit “p” dapat bertindih dengan sub kulit “s” atau sub kulit “p” lainnya, ikatannya relatif lebih kuat, hal ini dikarenakan sub kulit “p” terkonsentrasi pada arah tertentu. Contoh: a.Molekul HF : – konfigurasi atom H : 1s1 – konfigurasi atom F: 1s2 2s2 2Px2 2py2 2pz1 Tumpang tindih terjadi antara sub kulit 1s dari atom H dengan orbital 2pz dari aton, F. Pertindihan demikian disebut pertindihan sp. b. Molekul H2O: – konfigurasi atom H : 1s1 – konfigurasi atom O: 1s2 2s2 2Px2 2py1 2pz1 Dalam atom O terdapat 2 elektron dalam keadaan yang tidak berpasangan (orbital 2py dan 2pz), masing-masing orbital ini akan bertindihan dengan orbital 1s dari 2 atom H. Kedudukan orbital-orbital p saling tegak lurus, 1 diharapkan sudut ikatannya sebesar 90o, tetapi karena adanya pengaruh pasangan elektron 2px, maka kedua ikatan tersebut akan tertolak dan membentuk sebesar 104.5o.
c. Molekul CH4
– konfigurasi atom H: 1s1 – konfigurasi atom C: 1s2 2s2 2Px1 2py1 2pz0
Untuk mengikat 4 atom H menjadi CH4, maka 1 elektron dari orbital 2s akan dipromosikan ke orbital 2pz, sehingga konfigurasi elektron atom C menjadi: 1s1 2s1 2px1 2py1 2pz1 . Orbital 2s mempunyai bentuk yang berbeda dengan ketiga orbital 2p, akan tetapi ternyata kedudukan keempat ikatan C-H dalam CH4 adalah sama. Hal ini terjadi karena pada saat orbital 2s, 2px, 2py dan 2pz menerima 4 elektron dari 4 atom H, keempat orbital ini berubah bentuknya sedemikian sehingga mempunyai kedudukan yang sama. Peristiwa ini disebut “hibridisasi”. Karena perubahan yang terjadi adalah 1 orbital 2s dan 3 orbital 2p, maka disebut hibridisasi sp3. Bentuk molekul dari ikatan hibrida sp3 adalah tetrahedron. 1. Teori Domain Elektron ● Bentuk molekul tergantung pada susunan ruang pasangan elektron ikatan (PEI dan pasangan elektron bebas (PEB) atom pusat dalam molekul. Dapat dijelaskan dengan teori tolakan pasangan elektron kulit valensi atau teori VSEPR (Valence Shell Electron Pair Repultion). ● Molekul kovalen terdapat pasangan-pasangan elektron baik PEI maupun PEB. Karena pasangan-pasangan elektron mempunyai muatan sejenis, maka tolakmenolak antarpasangan elektron. Tolakan (PEB – PEB) > tolakan (PEB – PEI) > tolakan (PEI – PEI). ●
Adanya
gaya
tolak-menolak
menyebabkan
atom-atom
yang
berikatan
membentuk struktur ruang yang tertentu dari suatu molekul dengan demikian bentuk molekul dipengaruhi oleh banyaknya PEI maupun PEB yang dimiliki pada atom pusat. ●
Bentuk
molekul
ditentukan
oleh
pasangan
elektron
ikatannya
Contoh molekul CH4 memiliki 4 PEI\ 2. Merumuskan Tipe Molekul 1) Atom pusat dilambangkan dengan A 2) Domain elektron ikatan dilambangkan dengan X 3) Domain elektron bebas dinyatakan dengan E
TABEL BENTUK MOLEKUL Jumlah Pasangan
Jumlah Pasangan
Rumus 1
Elektron Bebas (E) (AXnEm)
Bentuk Molekul
Contoh
Elektron Ikatan (X) 2
0
AX2
Linear
CO2
3
0
AX3
Trigonal planar
BCl3
2
1
AX2E
Bengkok
SO2
4
0
AX4
Tetrahedron
CH4
3
1
AX3E
Piramida trigonal
NH3
2
2
AX2E2 Planar bentuk V
5
0
AX5
Bipiramida trigonal
PCl5
4
1
AX4E
Bipiramida trigonal
SF4
3
2
AX3E2 Planar bentuk T
2
3
AX2E3 Linear
6
0
AX6
5
1
AX5E
4
2
AX4E2 Sisiempat datar
H2O
IF3 XeF2
Oktahedron
SF6
Piramida sisiempat
IF5 XeF4
Dengan menggunakan teori VSEPR maka kita dapat meramalkan bentuk geometri suatu molekul. Dalam artikel ini maka akan di contohkan menentukan bentuk geometri molekul XeF2, XeF4, dan XeF6. Diantara molekul-molekul tersebut ada yang memiliki pasangan elektron bebas dan ada yang tidak, jadi molekul-molekul tersebut adalah contoh yang bagus untuk lebih memahami teori VSEPR Pertama kita harus mementukan struktur lewis masing-masing molekul.
Gambar 6. Orbital s,p,d,f
1